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ABSTRACT

Today's supercomputers and parallel computers provide an unprecedented amount of
computational power in one machine. A basic understanding of the parallel computing
techniques that assist in the capture and utilization of that computational power is
essential to appreciate the capabilities and the limitations of parallel supercomputers. In
addition, an understanding of technical vocabulary is critical in order to converse about
parallel computers. The relevant techniques, vocabulary, currently available hardware
architectures, and programming languages which provide the basic concepts of parallel
computing are introduced in this document.

This document updates the document entitled "Introduction to Parallel Supercomputing,"
M88-42, October 1988. It includes a new section on languages for parallel computers,
updates the hardware related sections, and includes current references.
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SECTION 1

INTRODUCTION

It is appropriate to begin with a discussion of supercomputers. Supercomputers provide
the ultimate in performance--a level of performance that can only be accommodated by
parallelism. In fact, it is fair to say that all supercomputers are parallel computers. The
converse is not true because there are other motivations (such as cost/performance and
fault tolerance) for using parallelism.

This document provides an overview of the parallel computing techniques, vocabulary,
currently available hardware architectures, and programming languages relevant to
current supercomputers and parallel computers. With today's supercomputers and
parallel computers providing an unprecedented amount of available computational power,
an understanding of the critical concepts associated with these machines will provide a
basis for appreciating their capabilities while also recognizing the present-day limitations
of parallel processing.

What is a supercomputer? There is no fixed definition because the state of the art
advances so rapidly that the most advanced computers soon become mediocre. In
addition, there is no agreement among computer scientists on the definition of a
supercomputer [Bell:89, NAS:89]. Historically, computer manufacturers have produced
machines that challenged the state of the art and provided extraordinary performance and
termed them supercomputers. There was prestige at stake in this activity, and though
supercomputers were few in number, the problems they addressed were of national
significance.

Traditionally, supercomputer-type problems involved computationally intensive problems
in the subject areas of computational fluid dynamics, climatic modeling, molecular
biology, chemical structures modeling, and electrical and mechanical design. These
problems tended to be large, numerical problems-number crunching problems-and the
computers to deal with them tended to emphasize outstanding performance on
high-precision floating point arithmetic. By the 1970s it was feasible to establish a
company completely dedicated to the production of this kind of computer, and Cray
Research, Inc. was born. The delivery of the first Cray-I in 1976 ushered in the modem
era of supercomputing.

Today there are large problems that are not numerical in nature which require computer
performance that challenges the state of the art. New modes of computing are required
and new architectures are arising to fill the need. We review these in the following
sections.
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For the purposes of this document, the term supercomputer will be defined loosely to
mean high-performance, general-purpose computers that exist today and can compete in
average performance with the latest Cray and NEC computers. This report will discuss
supercomputers as well as parallel machines that, in fact, are not traditionally considered
to be supercomputers. A good example is the mini-supercomputers such as those made
by Alliant.

Computer scientists tend to classify machines in different ways to provide different 3
insight into the machine's architecture. One well-known approach developed by
Michael Flynn classifies a machine by the type of instruction stream (a sequence of
instructions performed by a computer) and data stream (a sequence of data that the
computer performs instructions upon). Following Flynn's format, this report discusses
machines that are designated as either single instruction stream, multiple data stream 3
(SIMD) or multiple instruction stream, multiple data stream (MIMD) machines.

A second approach commonly used by researchers to classify machines is by the memory 3
architecture of the machine. For example, shared-memory implies multiple processors
sharing one common memory, whereas distributed memory implies memory localized to
each processor. These terms will also be used extensively throughout this document. n
Although a high-performance computer may only have one processor, the emphasis of
this report is on those computers that utilize multiple processors which run concurrently,
thus the term parallel computing.

Needless to say, parallelism (doing more than one thing at the same time) has always 3
been a major component of supercomputing. After all, once one has selected the fastest
components available, some form of parallelism is the only way to make things go even
faster. Supercomputers, even those that only have one processor, utilize parallelism at n
many levels of the architecture as its vehicle to increase speed. There are two basic
techniques for achieving parallelismi-replication of function and pipelining.

The analogy of a car wash illustrates these basic techniques. Washing a car consists of
three steps: soaping, rinsing, and waxing (figure 1-1). If we consider the standard model
of car washing, parallel operations are not practical, since some operations must be
synchronized (a car must be soaped before it can be rinsed, and rinsed before it can be
waxed). If we have three machines (replication of function) capable of washing cars and I
if we assume that each step takes one minute, then we can wash three cars in three
minutes. But what if we only have one machine? 3

I
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Car washing consists of three steps:
soap (s), rinse (r), and wax (w)

~ I
I I
Ls- r-+w-,

SI I

I-s-e- r- w.J

1 2 3 4 5
time

Figure 1-1. The Parallel Car Wash

If we completely soap, rinse, and wax each car one after the other, it takes nine minutes.
We can do better, however, if we line up the cars one after the other. We still must wait
three minutes to get the first car out, but we must wait only five minutes to get all three
completely washed. This is called pipelining (figure 1-2). Variations of this technique
have been used in supercomputers from the very beginning.
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ICar washing consists of three steps:I

soap (s), rinse (r), and wax (w)

" -s- t- r.+w-

s --- r- .w-

I
1 2 3 4 5

time

Figure 1-2. The Pipelined Car Wash 5
The value of replication of function is easy to understand. If a machine has two adders
instead of one, it is then theoretically possible to perform two additions at once. Equally,
if the machine possesses separate functional units to perform add and multiply
instructions (as opposed to a single arithmetic/logic unit to do both), the potential exists
for doing an add and a multiply at the same time.

Pipelining, on the other hand, provides a means for using available functionality more 3
efficiently. For example, a floating point add (figure 1-3) involves four steps: compare
exponents, shift the smaller augend until the exponents are equal, add the mantissas, and
normalize the result 3

I
I

I
I
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3.5o103 + 9.7o104

Compare 3<4

Shift 0.35.10 4

Add 0.35 + 9.7 = 10.05

Normalize 1.005 - 105

Figure 1-3. Floating Point Addition

A pipelined implementation of this operation works as follows: If we are adding 32 pairs
of numbers, the machine starts by comparing the exponents of the first pair. Then, once
the hardware that compares exponents has finished with the first pair, it can start work on
the second, while the first pair enters the shifting stage, and so on.

Depending on the number of stages involved, pipelining can yield as much as an order of
magnitude increase in speed over ordinary sequential processing. The principal difficulty
is in keeping the pipeline full so that the processing hardware can be kept continuously
busy. Much of the ingenuity in supercomputer design has been devoted to this problem.

A pipelined machine for matrix multiplication can be built using simple processors
connected in a planar array (figure 1-4). Suppose we wish to multiply the 4-by-4 matrix
A by the 4-by-4 matrix B to obtain the 4-by-4 matrix C. The element in the i-th row and
j-th column of the C matrix is given by

cij = ail*blj + ai2*b2j + ai3*b3j + ai4*b4j.

At every clock cycle, elements of the A and B matrices are pumped into the horizontal
and vertical pipelines, respectively. Results are accumulated at each processor so that
when the input data has flowed through, the results are contained in the processors. Done
this way, matrix multiplication can be performed in O(n) operations [Jamieson:87]. An
architecture like this is usually called a systolic array. Processors are connected to
nearest neighbors, and the topology, in conjunction with synchronous clocking, causes
each piece of data to arrive at the right processing element at the right time.

5
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Figure 1-4. Systolic Processing 3

Systolic arrays are not sufficiently flexible for use as arithmetic processors in general
purpose computers. However, the regular nature of most numerical problems provides a 3
relatively simple approach to providing pipelines which can be kept full. A set of vector
operations is defined to manipulate entire arrays. Because the same operation is
performed on successive pairs of array elements (as in our example above), the pipeline is I
kept full. Since there is some overhead involved in starting up the vector computation,
achieving adequate speed requires vectors of a certain minimum size to amortize the
start-up time over a sufficient number of computations. This minimum size depends on l
the machine architecture and varies from machine to machine. Also, a vector register is
designed to hold a maximum number of data elements. On the Aliant FX/Series
machines the maximum number is 32; Cray machines allow 64, while some Japanese
machines permit much larger vector (array) sizes by dynamic reconfiguration of vector
register storage. Performance is best for arrays at the maximum size, but otherwise 1
depends on the machine architecture. On the Alliant FX/Series machines, processing the

maximum 32 elen,.'nts with a vector instruction is approximately two to four times faster
than processing the same elements with sequential scalar instructions [Aliant:88b]. 1
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It is possible, however, to do better than single pipelining. By using replication of
function in concert with pipelining, an even higher degree of parallelism-hence,
performance improvement-can be achieved.

In addition to the methods described above, most computing techniques must deal with
the impossibility of constructing a memory that is both large enough to accommodate the
size requirements of computationally intensive problems and fast enough to keep up with
the fastest processing technology. Therefore, a hierarchy of memory (from large and
slow to small and fast) is provided, and the problem of scheduling the movement of data
among the different levels of the hierarchy becomes a critical issue for the architecture.

So far, we have examined only what we might callfine-grained parallelism--either how
to do pieces of instructions in parallel or how to perform more than one individual
instruction at the same time. At the most primitive level, the mechanics of a parallel
computation are transparent to the programmer-the results appear as if performed in an
entirely sequential fashion. However, as architectural devices such as vector instructions
are included, either the programmer must account for them or sophisticated compilers
will have to do so on the programmer's behalf. For regular problems such as traditional
supercomputing problems, significant progress has been made toward automatic
vectorization of code. Other kinds of code, however, still require the programmer's
personal attention.

As the granularity of the parallelism increases, the problem of programming the
architecture becomes more complicated. At the next level of granularity, called medium-
grained parallelism, complete processing units are replicated. As before, breaking up
pieces of numerical code to run on the various processors is the first step attempted in the
paralleization process and a number of manufacturers are currently offering compilers
that automatically accomplish this for their systems. FORTRAN and C are the most
popular languages with automatic vectorization and parallelization capabilities.

However, for many problems, arranging coarse-grained parallelism is the programmer's
task. The programmer must rely on programming languages (or language extensions) in
which parallelism can be directly expressed. The most important of these, at least from
the point of view of applications for the Department of Defense, is the Ada tasking
model. Ada tasks can be executed in parallel with a rendezvous mechanism for
specifying the required synchronization. It should be noted that there is software
overhead involved in the implementation of Ada tasking and other such models. It is,
accordingly, not always prudent to expect the same degree of performance improvement
for programs that use such models as that achieved in programs that make extensive use
of straightforward FORTRAN loops.

Finally, a few caveats. A classification of architectures is presented in the following sec-
tions. It is important not to take this classification scheme too seriously--the boundaries
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are always fuzzy and few machines are pure representations of a single type. Many are, I
in fact, obvious hybrids of the presented categories. Also, it is important to note that the
value of any architecture is not absolute, but is strongly related to the type of problem one
wishes to run. Machines that rely for their performance on catering to the regularity of
numerical applications characteristically do not perform as well on symbolic
computation. Thus, it is important not to measure the performance of a machine in terms
of how quickly it might perform some ideal computation. Instead, it must be evaluated
by careful analysis of how the specific intended application will run.

As the number of components in a system increases, so does the potential for
malfunction. Providing continuity of operation and service in the presence of faults or
malfunction is fault-tolerant computing. Since high-performance computers have always
contained more components than ordinary computers, architectural attention to detection
of and recovery from errors has always been important. Thus, the IBM 7030 (an early
supercomputer) introduced error-correcting codes for memory when standard commercial
practice had not even advanced as far as using parity. In fact, one third of the transistor
count in the 7030 was devoted to error detection and correction. Nevertheless, little is I
said about fault tolerance in this document.

The fact of the matter is that for fine-grained parallelism, standard techniques are used for I
reliability. In contrast, providing system-level fault tolerance for coarse-grained
parallelism remains to a large degree a research topic [Nelson:90. While there are, in 3
fact, commercial fault-tolerant multiprocessor computers available, these computers are
primarily focused on the applications of very large databases and on-line transaction
processing [Siewiorek:90].

Many of the parallel computers discussed in this document base their operating systems
on UNIX. The security holes found in of UNIX are well known and documented I
[Garfinkel:91]. Therefore, this document does not address the computer security issue in
regard to parallel computers. Finally, special-purpose computers, such as
high-performance database machines and signal processors, are not discussed. (Some of
the work in parallel signal processing that has been done at MITRE is described in
[Cenkl:91, Nowacki:92].) 3
In the next section, we describe the various kinds of machine architectures. Section 3
then discusses software languages for parallel computers. Section 4 discusses the
performance issues that should be considered when comparing one machine to another.
Finally, section 5 is a short summary and provides a look into the future. 3
Appendix A provides descriptions of some current commercial offerings, illustrating the
architectural alternatives discussed in this document. Appendix B provides a glossary of 3
terms and abbreviations. Appendix C provides a list of trademarks used throughout the
document.

8



ISECTION 2

MACHINE ARCHITECTURES

2.1 Introduction

There are several architectural dimensions to consider in parallel computing systems.
How many processors are being used-tens, hundreds, or thousands? How are they
interconnected? Can the system be expanded incrementally? Can the architecture be
scaled up to support a large number of processors? How powerful are the individual
processors? Are they single-bit processors, commercial microprocessors, or powerful
custom processors? What is the granularity of parallelism that is supported: fine-grained
(at the instruction level); medium-grained (at the cooperating concurrent task level with
process synchronization occurring every few hundred machine instructions); or coarse-
grained (at the nearly independent process level with process synchronization occurring
every few thousand machine instructions)? This section addresses these considerations
by discussing some commercially available machines.

2.2 Multiple Instruction Stream, Multiple Data Stream Machines

Multiple instruction stream, multiple data stream (MIMD) machines possess a number of
processors that function asynchronously and independently; at any given time different
processors may be executing different instructions on different pieces of data. They are
ideal for medium to coarse-grained parallelism. The processors used in these machines
range from conventional microprocessors, such as the Motorola 68040 used in the Myrias
SPS-3 to powerful proprietary vector processors such as those used in the Cray Y-MP.
This type of architecture has been used in a number of application areas; for example,
computer-aided design/computer-aided manufacturing (CAD/CAM), simulation,
modeling, and as communication switches. These MIMD machines can be broken down
into the shared-memory and distributed-memory subcategories based on how their
processors access memory.

Shared Memory. MIMD machines in this category have processors which share a
common, central memory, as shown in figure 2-1, where the symbol P represents a
processor. In its simplest form this entails attaching all the processors to a bus that
connects them to memory. We shall call these bus-based shared-memory machines.
Other machines which attempt to avoid some of the difficulties of the bus-based
architecture will be discussed later as extended shared-memory and hierarchical shared-
memory machines.

9
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Figure 2-1. Multiple Instruction, Multiple Data, Shared Memory

Bus-Based. In addition to sharing information through central memory, these machines i
may have another bus that enables them to communicate directly with one another. This
additional bus is used for controlling concurrency among the processors. Currently
available shared-memory architectures that use a bus to connect processors to main
memory are limited to supporting only a relatively small number of processors. For
example, the Alliant computer supports a maximum of 28 processors, the Sequent I
computer a maximum of 30. This limitation is due to contention among processors for
shared memory. The speed and bandwidth of the memory bus is a critical factor in such
architectures. Thus, these machines can be incrementally expanded up to a point which is I
limited by the contention on the bus. Processors in these systems often have memory
caches (discussed in section 4 on Performance Considerations) to minimize accesses to
the shared main memory.

Extended. These architectures attempt to avoid or diminish the contention among 3
processors for shared memory by subdividing the memory into a number of independent
memory units and connecting them to the processors by an interconnection network.
Many different interconnection schemes have been considered, and, indeed, many of I
these are quite similar to the distributed-memory architectures we will discuss later.
However, they all provide hardware and software support for treating the memory units
as a unified central memory. We shall discuss several of these schemes starting with the I
use of crossbar switches as an interconnection mechanism as illustrated in figure 2-2.
Memory is divided into separate units; processors and memories are connected together 3
in a two-dimensional array of wires linked by switches at each crossing point. Each
processor is placed on a row, each memory unit on a column. A processor gains access to
a memory unit by setting a switch at the intersection of the appropriate wires. A crossbar
linking N processors to M memory units requires N times M switches. The cost of a
32-by-32 unit system containing 1,024 switches was considered prohibitive for
commercial systems [Uhr:87] in the mid-eighties. Today Cogent uses four 32-by-32 I
crossbars to connect 32 processors, which allows as many as four processors to be
connected to the same processor at the same time. Crossbar switching networks are still
too expensive to be practical for connecting large numbers of processors. However, they
may become more economical as optical interconnection becomes feasible [Sawchuk:87].

10
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Figure 2-2. Crossbar Switch With 256 Switches

The BBN TC2000 is an example of a shared-memory architecture that uses a switching
network to give processors access to memory units. In the TC2000, each processor is
connected directly to a memory unit. When one processor needs access to the memory
unit of another processor, it activates a switch. Rather than using a crossbar switch, the
TC2000 uses BBN's third-generation Butterfly switch technology. The TC2000
Butterfly switch uses two stages of 8-input, 8-output Butterfly switch modules (SM) to
interconnect up to 63 memory-processor modules as shown in figure 2-3. In general,
connecting N processors using switches with M inputs and M outputs requires log MN
banks of N/M switches. Thus, a three-stage Butterfly switch can support 512 modules.

I 11



U
I

I

I

Figure 2-3. Two-Stage Butterfly Switch

Hierarchical. The Myrias SPS-3 is an example of a shared-memory architecture that uses
a hierarchy of buses to give processors access to each other's memory (figure 2-4). In the
Myrias, the four processors on a board communicate through an intemodal bus. Sixteen
boards may be placed in the same cage; two buses are used to support interboard
communication. The two interboard buses connect to a crossbar switch that has five
communication ports. These communication ports can be used to connect cages. In this
way, the Myrias can be configured to support over a thousand processors.

I1

i

I

12i



Backplane B1ackplaneab O.......... i:! : :: : :: : i :................pla n
Interface Interface .. ..

I I ~..... ..9*- .

-':i:iiiiiiii V: P I"VI ..... . R C Lii

,ii~~~~~iiiiii~~~. .........................'i

I Communication/Control
i-;. Card

Multiprocessor Card Multiprocessor Card

ICL = Intercage Links
XBAR = Crossbar

Figure 2-4. Myrias SPS-3

Distributed Memory. In this category, each processor has its own individual memory
store-it does not share memory with other processors as shown in figure 2-5 where the
symbols P and M represent a processor and memory. For data to be shared, it must be
passed from one processor to another in the form of messages. Since the processors do
not share memory, contention among processors is not as great a problem. Thus, these
systems would seem to more readily scale up to support a large number of processors.

P+M P+M P+ PM PM PM

Interconnection Network

Figure 2-5. Multiple Instruction, Multiple Data, Distributed Memory

For a large number of processors, it is not economically feasible to connect every
processor directly to every other processor. So the approach taken is to connect each
processor to only a few others. The original systems designed in this fashion were

13
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inefficient, because messages were routed through intermediate processors on their way U
to a final destination processor. In such a system, the amount of time spent by processors
performing simple message routing can be substantial. Also, the difference in the amount
of time needed to send a message to a directly connected processor versus an indirectly
connected processor may be substantial. This led to systems designed to reduce the
number of hops between processors (systems such as hypercubes or reconfigurable
networks) and research into algorithms designed to localize data transfer among

processors. Providing special-purpose processors for message routing, often termed
wormhole routing, can eliminate some of these difficulties [Dally:87]. Among the
commercially available processors in this category, the interconnection schemes that
seem to be the most popular are the hypercube and mesh.

Hypercube. In a hypercube system containing four processors (called a 2-cube), a
processor and memory module are placed at each vertex of a square as illustrated in 3
figure 2-6a where the symbols P and M represent a processor and memory. If processors
on the diagonal vertices send messages to each other, those messages must be forwarded
through one of the directly connected processors. By definition, the diameter of the
system is the minimum number of steps it takes for one processor to send a message to
the processor that is furthest away. The diameter of a 2-cube is therefore 2. 3
In a hypercube system containing eight processors (called a 3-cube), a processor and
memory module are placed at each vertex of a cube. Each processor is directly connected 3
to three others. The diameter of a 3-cube is 3. For example, in figure 2-6b, it takes three
steps for processor 000 to send a message to processor I I (i.e., 000 to 001 to 101 to
111).3

I
I
I
I
I
I
I
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00 10 000 100

a. 2-cube b. 3-cube

Figure 2-6. Hypercubes

In general, for a system that contains 2N processors (called an N-cube), each processor is
directly connected to N other processors, and the diameter of the system is N. One of the
drawbacks of the commercially available systems that use the hypercube topology is that
they must be configured in powers of two. For example, it is possible to have a system
that contains 64 or 128 processors, but not one that contains 90 processors. Further, if the
system is to be used by multiple users, each user must be assigned a subcube that contains
a power of 2 processors. Even though a user needs only five processors for a particular
application, eight must still be allocated.

The Intel iPSC/860 is a commercially available machine with a hypercube
interconnection network. Its maximum configuration supports up to 128 processors. In
the iPSC/860, each computational reduced instruction set computer (RISC) processor is
connected to a message-routing processor; these routers are connected in a hypercube.
When one computational processor needs to send a message to another computational
RISC processor, it passes the message to its router, as illustrated in figure 2-7. The
message is passed from router to router (along a specified path which contains the fewest
nodes) until the router that is connected to the destination computational processor is
reached, at which point the message is delivered to that computational processor.

15
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Figure 2-7. Intel Message Routing

The iPSC/860 uses a derivative of wormhole routing called direct connect routing. InU
this routing scheme, the path fr'om the sending computational processor's router to thedestination processor's router is established and held until the message has been 3
completely transmitted. The advantage of this scheme is that once a message establishes
a path or circuit, the message moves directly to the destination without further delay. A
possible disadvantage of this scheme is that if a long message must be passed, the entire
path is held until that message is completely transmitted. If other messages need to use

any portion of the path, they must wait.

The NCUBE 2 processors also use a high-speed hardware message routing unit to reduce
communication overhead. This unit replaces previous store-and-forward schemes for
messages sent beyond nearest neighbor processors and thus performs many times faster.
It allows direct pass-through of messages to other processors without interrupting
intermediate processors or requiring message data to be stored in their memory, and
messages can be of any length.

Mesh. In a mesh, processors are placed in a two-dimensional grid, as depicted in figure 1
2-8, where the symbols P and M represent a processor and memory. Each of the
processors is connected to its four immediate neighbors. Wraparound connections are
also sometimes provided at the edges to further reduce the communication diameter.
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Figure 2-8. Mesh

Although the Symult S2010 (previously called the Ametek S2010) is no longer
commercially available, its architecture provides an interesting contrast to the Intel
iPSC/860. The Symult 52010 is a system that uses a mesh interconnection scheme to
support up to 1,024 processors. In the S2010, each computational 68020 processor is
connected to a message-routing processor, and then the message-routing processors are
connected in a mesh. When one computational processor needs to send a message to
another, it passes the message to its router processor as shown in figure 2-9. The message
is passed from router to router the appropriate number of steps in the horizontal direction.
Finally, the message is passed the appropriate number of steps in the vertical direction
until the router that is connected to the destination is reached.
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Figure 2-9. Symult 52010 Message Routing 5
The Symult S2010 does not use Intel's direct-connect routing technique. Rather,
messages are packetized (that is, broken into pieces of fixed length); each router 3
processor then uses fair arbitation to determine which packet to pass next. An advantage

of this scheme over direct-connect routing is that other messages may not be delayed as
long, when a long message is sent on a path that uses a portion of the path they require. 11
On the other hand, packet management entails some amount of overhead that is avoided
in direct-connect routing. This overhead results from organizing the message to be sent1
into packets at the source and reorganizing back into the original message format at the I
destination.

An advantage of the mesh over the hypercube topology is that mesh systems need not be 11
configured in powers of two. A disadvantage is that the diameter of the mesh network is

greater than the hypercube for systems with more than four processors. For example, in a

64-processor hypercube, the diameter is six, while in a 64-processor mesh with no
wraparound connections, the diameter is 14. 1
According to results obtained from the California Institute of Technology, the use of
special-purpose processors for ruting messages should r educe message-passing time
sufficiently to allow a two-dimensional mesh to support as many as four thousand
processors [Dally:87]. For more than that number, a three-dimensional mesh is
suggested. 3

I
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Reconfigurable. In a reconfigurable system, programmable switches allow users to select
a logical processor interconnection topology that best matches their application's
communication patterns. In some cases, the processor topology can be defined by the
user at run time. The Meiko Computing Surface is an example of a system whose
connectivity can be manually or electronically reconfigured into various topologies such
as ring3, grids, low-order hypercubes, and pipelines.

1 2.3 Single Instruction Stream, Multiple Data Stream Machines

In single instruction stream, multiple data stream (SIMD) machines, all processors
execute the same instruction, at the same time, on different data, under the control of a
central control unit as shown in figure 2- 10 where symbols P and M represent processor

I and memory. These systems can be massively parallel, generally possessing a very large
number of simple (in some cases only 1-bit) processors. For this approach, speed comes
from having thousands of processors. For example, the Connection Machine Model
CM-2 has 64,000 1-bit processors. This type of architecture has proven successful in a
number of application areas; for example, image processing, partial differential equations
by relaxation methods, matrix operations, fast Fourier transforms, and database searches,
all of which exhibit fine-grained parallelism.

IP+M P+M P+ P+M P+M P+M m
#Interconnection Network

Figure 2-10. Single Instruction, Multiple Data, Distributed Memory

To pass data from one processor to another, SIMD processors may be interconnected in
different ways. In the CM-2 and the Active Memory Technology DAP 610, processors
are connected in a two-dimensional mesh. In addition, in the CM-2, each processor is
connected to a router processor, and router processors are connected in a hypercube. In
the DAP, on the other hand, there is an orthogonal bus system that connects all the
processing elements in each row and all the processing elements in each column.
Structuring these row and column data paths in this manner provides a capability to
simultaneously broadcast messages to all processors in a given row or column.
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Image processing is an application that is suitable for SlMD architectures. Many of the
computations involve the same operations performed on similar data elements
simultaneously. Let us assume our image is given by a two-dimensional array of integers
between 0 and 16 representing gray scale values (figure 2-11). Important goals of an
image recognition system are the elimination of noise and the detection of edges. 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 4 10 10 0 10 0 0 0 0 10 10 10 0 0 I
0 0 6 10 10 10 10 8 0 0 0 10 10 10 0 0

0 0 8 10 10 10 10 1U 0 0 0 10 10 10 0 0

0 0 12 10 10 10 10 10 0 0 0 10 10 10 0 0

0 0 10 10 12 10 11 10 0 0 0 10 10 10 0 0

0 0 10 11 15 10 12 10 6 0 0 0 0 0 2 0

0 0 4 10 10 10 10 3 0 0 0 0 0 0 0 0

0 0 3 10 10 10 10 5 0 0 0 0 0 0 0 0

0 0 4 10 10 1010 2 0 0 0 0 0 0 0 05

0 0 4 10 10 10 7 3 0 0 0 0 5 0 0 0

0 0 0 0 6 8 0 0 0 0 0 0 0 0 0 0 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 1
0 0 0 0 .0 0 0 0 0 0 0 0 0 0 0 0

Figure 2-11. Original Array

Let's examine how a simple algorithm might work on a SIMD. Suppose we assign each 3
element of the array to a processor. In order to identify the edge of an object in a picture,
we need to identify the places where the light intensity changes sharply. To obtain an
estimate of the direction of maximum change (squared gradient) of the light intensity at a
point, we can use the formula:

(al )2 + Al2 - (E- + (N - S) 2

In this formula, E, W, N, and S represent the values of the array elements to the east, 1
west, north, and south of a point, that is, the value contained in the memory of the

I
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i processor to the east, west, north, and south of the array element that represents the point.
The symbol I represents light intensity at a point.

If we perform the necessary computations all over the image, we obtain a new array,
which we call the squared gradient array (figure 2-12). In the squared gradient array,I there are high values at places where brightness changes rapidly, that is, at the edges of
the objects. While in regions of constant brightness, the value is zero. Where there is3 noise, the output is non-zero but relatively small.

I0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 16 100 100 0 100 0 0 0 0 100 100 100 0 01 0 16 136 136 200 100 100 164 0 0 100 200 100 200 100 0

0 36 116 16 0 100 4 200 64 0 100 100 0 100 100 0

0 64 136 4 0 0 0 104 100 0 100 100 0 100 100 0

0 144 104 4 4 0 1 100 100 0 100 100 0 100 100 0

0 100 104 5 25 1 4 121 136 0 100 200 100 200 104 0

0 100 157 25 5 9 1 85 100 36 0 100 100 104 0 0

0 16 149 37 25 0 53 125 45 0 0 0 0 0 4 0

0 9 100 49 0 0 25 101 25 0 0 0 0 0 0 0

0 16 101 36 0 0 73 104 4 0 0 0 25 0 0 0

0 16 116 136 16 13 149 53 9 0 0 25 0 25 0 0

0 0 16 136 164 136 113 9 0 0 0 0 25 0 0 0

0 0 0 0 36 64 0 0 0 0 0 0 0 0 25 0
0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 2-12. Squared Gradient Array

If we threshold at 50, the noise is removed. Thus, we obtain the final array, with the
edges of objects clearly marked and the noise removed (figure 2-13).
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 100 100 0 100 0 0 0 0 100 100 100 0 0

0 0 136 136 200 100 100 164 0 0 100 200 100 200 100 0

0 0 116 0 0 100 0 200 64 0 100 100 0 100 100 0I

0 64 136 0 0 0 0 104 100 0 100 100 0 100 100 0

0 144 104 0 0 0 0 100 100 0 100 100 0 100 100 0

0 100 104 0 0 0 0 121 136 0 100 200 100 200 104 0

0 100 157 0 0 0 0 85 100 0 0 100 100 104 0 0 3
0 0 149 0 0 0 53 125 0 0 0 0 0 0 0 0

0 0 100 0 0 0 0 101 0 0 0 0 0 0 0 0 1
0 0 101 0 0 0 73 104 0 0 0 0 0 0 0 0

0 0 116 136 0 0 149 53 0 0 0 0 0 0 0 0 3
0 0 0 136 164 136 113 0 0 0 0 0 0 0 0 0

0 0 0 0 0 64 0 0 0 0 0 0 0 0 0 0 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 U
Figure 2-13. Final Array 3

The computations involved in this three step algorithm used values of neighboring image
cells or the value of the cell itself. In each of the three steps, the required values can be
obtained and the computations performed synchronously. This is an ideal application for
a SIMD architecture. It is not surprising that NASA has used SIMD's for image
processing applications 3
2.4 Networks of Machines 3
Computer networks can be used to interconnect independent machines. Networks are a
mechanism to increase computational power. First, networks allow users to utilize more
than one high-performance computer to carry out a computation at a coarse-grain level.
Secondly, networks, by virtue of their interconnection of different machine types, allow
sharing of limited computational resources.

In fact, most commercial manufacturers today provide both hardware and software 3
interfaces for integrating their machines into at least local area network environments.

I
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One research effort is the CEDAR project at the University of Illinois in which clusters of
modified Alliant FX/8s are networked together.

Local area networks can be used to couple many machines. If appropriate software is
added, as with MITRE's own Network Batching System, these networks can be used as
loosely coupled MIMD computers. MITRE has been able to make N Sun-3 computers
yield an N-fold speed improvement over one computer in executing the quadratic sieve
integer factoring algorithm [Silverman:88, 89, 90,91]. The result is at least a 33:1
price/performance improvement over what a Cray X-MP can achieve. The chief reason
for this is that the algorithm is designed so that it requires little processor-to-processor
communication. Such algorithms are as yet rather rare, but research effort is being
focused on their development. One can often trade communications for additional
computation, yet still speed up actual algorithm execution time.

2.5 Parallelism Within Processors

So far we have been considering architectures that realize parallelism by incorporating
many processors which can be utilized simultaneously for problem solving. Indeed, this
kind of parallelism is emphasized in this document. In this subsection, however, we will
concentrate on architectural features which promote parallelism within a single processor.
Since these features are developed most fully in modem conventional supercomputers
(such as the Cray, NEC, CONVEX, Fujitsu, and Hitachi supercomputers), we will use
this class of machine as a point of departure in the following discussion.

In previous subsections, the basic mechanism for parallelism has been replication where
many processors are used. Pipelining (as described in the introduction, section 1)
becomes the basic mechanism for providing parallelism within processors, although
replication (especially in the utilization of many pipelines) is also important.
Furthermore, we should observe that most modem supercomputers contain more than one
processor, so that above the processor level they exhibit the architecture of a shared
memory MIMD as described in subsection 2.2.

Every supercomputer designer has a number of bottlenecks to eliminate which may yield
to parallelism as a solution. To begin with, many arithmetic instructions take several
clock periods to execute. (For example, a floating-point addition on the Cray X-MP
processor takes six clock periods.) Clearly much can be gained by parallelism. For
example, if we replicated the adders and used them alternately, we could do twice as
many adds at the same time. Indeed, this approach was taken in earlier computers
including the CDC 6600 designed by Seymour Cray. In modem supercomputers,
however, pipelining is typically implemented first, because it does not introduce the
communications and synchronization penalties frequently associated with replication.
Consequently, supercomputer instruction processors (usually called functional units

23



I

because they perform specific functions) are routinely pipelined and can, therefore, I
accept a new instruction every clock period. Usually there are many different functional
units to perform the many different kinds of instructions (on the X-MP processor there is
a total of 13 or 14) so there is replication parallelism as well.

To make all of this work, the pipelines must be kept full of instructions and data. To 3
make sure that instructions are always available, high speed buffers are placed between
the main memory and the functional units. (On the X-MP these buffers can hold 512
16-bit instructions.) So that data can be prefetched well in advance of use, many sets of
registers are available to act as data buffers.

Complicated schemes for accessing the main memory are generally another hallmark of .
conventional supercomputers. Although fast memories are used in these machines, they
are still substantially slower than the CPU clock rate. For example, on the X-MP 3
memory access time is four clock periods. Complex interleaving schemes are employed
to provide a continuous flow from memory to the CPUs at the CPU clock rate in order to
keep the pipelines full. Figure 2-14 shows the memory access scheme of a two CPU
Cray X-MP. Each CPU has four ports to the memory which are connected via a cross bar
switch to four lines each of which goes to one of the four memory sections. Each section
in turn consists of eight one megabyte memory banks. Addresses are alternated among
the sections and banks to minimize the probability of memory conflict. Interestingly,
when either CPU has to initiate an instruction fetch sequence, all eight ports are used 3
simultaneously for that purpose.

I
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IFigure 2-14. Cray X-MP Memory Connections for 2 CPUs

Even using the sophisticated scheme depicted in figure 2-14, keeping the various
pipelines full is difficult so that the hardware's maximum computing capabilities can
rarely be exploited. For this reason, supercomputer designers added vector instructions,
described in section 1, to improve performance. These instructions operate on entire
arrays of data. With vector instructions, once the pipeline fills it will remain full until the
processing is complete. An example of this is illustrated in figure 2-15 depicting a
snapshot of a vector operation taken in the middle of its computational sequence. A 64
element vector X is stored in vector register VO and a 64 element vector Y is stored in
vector register V 1. The X-MP is executing the vector add instruction which will cause
the 64 element vector Z = X + Y to be computed and stored in vector register V7. As can
be seen from the figure, parts of eight different adds are going on at the same time.

2
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Figure 2-15. Snapshot of Cray X-MP Vector Operation I
The essence of SLMD parallelism is that the same operation is being performed on
different data elements at the same time. When the programmer uses a vector operation,
he is telling the system that it may perform the same operation on different data elements 3
at the same time. Thus, from the programmer's perspective a vector operation is a SIMD
operation. In subsection 2.3 describing SIMD computers, we described how SIMD
parallelism can be provided by replication. In a vector processor, it is typically provided I
by pipelining. Therefore, a vector processor is essentially a pipelined SIMD and is
sometimes referred to as such in the literature [Hockney: 88]. n
The essence of MIMD parallelism is that different operations are being performed on
different data elements at the same time. It is also possible to implement a MIMD by 3
pipelining within a single processor. The process execution module (PEM) of the
Denelcor Heterogeneous Element Processor (HEP) is a good example of MIMD
pipelining. The HEP is no longer being manufactured, but is interesting enough to I
warrant further discussion. This machine could have up to 16 PEMs connected by a
packet switched network and up to 128 data memory modules (DMM). Thus, the HEP is
a shared memory MIMD where each processor in turn is a pipelined MIMD.

I
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However, the control structure of a PEM itself, presented in simplified form in figure
2-16, is the interesting feature of the HEP. Each circle in the diagram represents the
control tag of one of up to fifty simultaneous processes. These processes share an
eight-stage instruction-execution pipeline. When the tag of a process enters the first
stage, the corresponding instruction is fetched from the one megaword local instruction
store. (Since the instructions are stored locally, the characterization of this architecture as
a shared memory MIMD is slightly inaccurate.) When it enters the second stage, the
corresponding data are fetched if they reside in the local register or constant stores. If a
main memory reference is required, however, the control tag is "waved off" and sent to
the SFU queue (SFU stands for shared-memory functional unit). The tag of the process
will then be reentered into the instruction execution pipeline when the memory operand is
available.

2048 4096

1 Mwod Instruction Store Registers Constants

UI0 instruction Fetch

r tExecution Stage 0

0 Execution Stagel I + etc.

o Execution Stage 2

I Execution Stage 3

o Execution Stage 4

INC Q Data Store Functional Units
Instruction Execution Pipeline

SFUPc

control tag of a process SueeiPche

Memory Units

Figure 2-16. Control Structure of the PEM in the Denelcor HEP
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The next four stages correspond to the stages of the functional units which are pipelined I
as is customary in supercomputers. When the last stage is entered, the result of the
operation will be stored. Finally, after leaving the pipeline the instruction counter in the
control tag will be incremented (as represented by the box labeled "INC" in the diagram),
so that it will be ready to reenter the pipeline at a later time. In some sense, the PEM
works in much the same way as a "time-sliced" multiprogramming system but with a 3
time slice of one clock period!

"Waving off" the control tag whose memory operand is not yet available is perhaps the I
most interesting of the ideas presented above. The notion that the execution of
instructions can be ordered by the availability of data is carried further in data flow
machines where it becomes the principal control mechanism. To date, however, only
experimental, general-purpose, data flow machines have been constructed although
several coarse-grained data flow architectures for signal processing are currently
marketed. A related topic is the concept of data flow languages, discussed in section 3.5,
which are in some sense the natural languages for these machines.

In recent years a new category of architectures has evolved to achieve parallelism within
a processor. While the vector machines have been very successful, not all code can be
readily vectorized. Therefore, there has been some impetus to find architectures that can I
execute more than one instruction per clock cycle without resorting to vector operations.
Such architectures are called superscalar. They borrow from the successful vector
machines the idea of multiple pipelined arithmetic units, so that several operations can be
going on at the same time. Additionally, the architectures usually employ a RISC CPU
so that most instructions only require one or two clock periods for execution; thus, the 3
number and length of pipelines required to obtain speedup may be reduced.

Data fetch bottlenecks are ameliorated by extensive use of caches and by providing I
hardware support for performing instructions out of order thus allowing the data fetch
instructions to be issued as early as possible. In the IBM POWER architecture, for
example, there is a register renaming capability, so that if an instruction to fetch data into
a register that is in use is encountered, the data can be fetched into an unused register
which will be renamed to be the correct one at the appropriate time.

Caches are also used to avoid instruction fetch bottlenecks. Moreover, since the goal is to
execute more than one instruction per clock period, there is a requirement for a facility to
fetch and decode several instructions at the same time. This can be accomplished either
by using a long instruction word which contains several instructions or by building into
the instruction cache/buffer the capability of providing several instructions during a
single clock period. The former approach has been popular in signal processing
machines, and it did make a brief appearance in the Multiflow Trace architecture (where 3
packing instructions into the long word was supported by innovative compiler
technology) before Multiflow went out of business. This approach can currently be
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I found in Intel's iWARP architecture, which may be considered to be on the boundary
between the categories of general-purpose and special-purpose computers (signal
processing). The second approach which involves fetching more than one instruction per
clock period is more common in current superscale chips.

IThus, as we can see, increasingly ingenious strategies have been formulated to achieve
greater parallelism and faster performance in individual processors. It is generally
believed that the future of high-performance computing rests with the massively parallelapproaches described in the previous subsections. The MlMDs described in subsection
2.2 will require increasingly capable processors-processors which will undoubtedly

incorporate many of the ideas set forth in this subsection.
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I SECTION 3

I LANGUAGES FOR PARALLEL COMPUTERS

1 3.1 Introduction

Today's parallel computers have extraordinary computational power. The question is
whether this capability can be used effectively to increase application performance. The
answer to this question depends on how well the hardware and the application software
interface. Since the application software consists of an algorithm, the programnming
language, and the compiler, the processing power of the parallel computer is ofteni realized only when this software explicitly exploits the hardware.

For multiple processors to work together, the various routines executed on these
processors must communicate and synchronize with one another. Without
communication and synchronization mechanisms, code may be executed using old values
of data rather than the current values, and variables may be modified by more than one
process, leading to unintended results. Communication also allows the execution of one
process to influence the execution of another process.

Discussed in the following section will be the various synchronization mechanisms that
are used to interface the software with the hardware and the methods currently used for
parallelizing them. In sections 3.3 through 3.8, some of the latest approaches to parallel
programming, including new languages and software paradigms currently being
researched, are discussed.

3.2 Synchronization Operations and Methods

Synchronization is required when processes communicate with one another because of

process dependencies. Typically, a process, P2, must wait until another process, P1,
completes an action before it can begin its action. For example, let the shared variable
x =0 and let

P1: x = X +1 P2: x = x + 2.

Although both of the statements associated with processes PI and P2 look like atomic
statements (an indivisible operation), in fact, they are not. Both statements actually take
three steps to execute. First, the value of x has to be fetched from memory and stored in a
register; second, the constant 1 or 2 is added to the register; and finally, the result in the
register is stored back in x. When processes P1 and P2 are executed sequentially, x hasithe value 3. However, if processes P1 and P2 are executed concurrently with no
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synchronization, x may have a value of 1, 2, or 3 as a final result because the three steps i
of P1 and P2 may be intertwined. Therefore, synchronization is required to ensure the
correct value of x by forcing sequential execution of P1 and P2. Synchronization that i
ensures that a sequence of statements is treated atomically is called mutual exclusion. A
set of statements that must be executed atomically is called a critical section.

One way of providing synchronization is by using semaphores. A semaphore is a shared
variable that indicates the number of processes attempting to enter their critical section.
Typically, two atomic operations, P (different from processes P1 and P2) and V, are
associated with semaphores. The operation P allows a process to acquire permission to
enter its critical section, and the operation V records the termination of one process'
critical section so that another process may enter its critical section. Protecting critical
sections with semaphores is easy; all the hard work is done in P and V. The operation P
is placed before the critical section and V afterwards. For example, let a semaphore, 3
denoted as s, be a nonnegative integer initialized to one. Looking at the previous
example, the processes P1 and P2, could be rewritten as [Whiddett:87]:

Pl: P(s) P2: P(s)
X = X + 1 x = x + 2
V(s) V(s) 3

When a process wants to enter its critical section, it executes P(s). P(s) performs several
operations atomically. It reads and tests s. If s has a value greater than zero, it
decrements s and allows the process to enter its critical section. If s is equal to zero, the
process is not allowed to enter its critical section. V(s) also performs operations
atomically. It reads and increments s' value. Suppose s is equal to one, when PI I
executes P(s). P(s) decrements s and allows P1 to enter its critical section. Now suppose
P2 wants to enter its critical section, it begins by executing P(s). However, this time s has
a value of zero, so P2 may not begin executing its critical section. When PI is finished
executing its critical section, it executes V(s). V(s) increments s. Now suppose P2
executes P(s) again. This time s is greater than zero, so P decrements s and allows P2 to
enter its critical section.

Now assuming processes P1 and P2 are intended to be executed serially, the correct i
answer, x=3, is ensured. The operations P and V can be implemented in hardware or in
software using spinlocks or system calls to the kernel. Spinlocks are shared variables
that, when set to a prespecified value by a process, signal that a condition has occurred. I
A process waits for that condition by repeatedly testing the shared variable. The repeated
testing is also called spinning, thus, the name spinlock. The main disadvantage of using
spinlocks to implement synchronization is that spinning wastes processor cycles that
could otherwise be used for useful work. Using system calls to the kernel, on the other
hand, is ideally suited for implementing synchronization without using a spinning i
mechanism. The kernel keeps track of which processes are ready to execute by
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Imaintaining a ready list. Processes that are blocked by a semaphore are not entered on
the ready list and are not executed.

Using either spinlocks or semaphores for implementing synchronization in a parallel

program can make the algorithm unstructured and prone to errors. Typical mistakes are,
for example, invoking either P or V and not the other, or using P on one semaphore and
the matching V on a different semaphore. These types of mistakes may cause deadlock.
Deadlock occurs when two or more processes are waiting for events that will never occur.

Other synchronization techniques have been developed which avoid these types of errors.
One of these is the concept of monitors. A monitor is a construct which encapsulates
both the resource definition and the operations that manipulate it [Andrews:83]. Inside a
monitor, permanent variables are used to store the state of the resource. These can be
accessed only from within the monitor and are reset between the various monitor
operation calls. Control of the monitor occurs at the monitor boundary, and fairness is
enforced by means of a wait queue. As an example, a monitor "xmon" written to
control the reading and writing of the shared variable x would take the following
structure:

x_mon: monitor
var x_beingwritten: boolean
procedure read_x

if (x_being-written) then
wait

else
read x

end read_x

procedure read_xdone
signal

end read_x_done

procedure write_x
if (xbeingwritten) then

wait
else

x_beingwritten = T
write x

and write_x

procedure write_xdone
x_being-written = F
signal

end write_x_done
end x_mon

The boolean variable x-being-written is used to control access to the operations within
the monitor. In order for a process to read x, x-being..written must be false. This ensures
that no process will access the variable at the same time another process is updating it.
On the other hand, it also allows multiple reads to occur concurrently. In order to ensure
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fair scheduling of the waiting processes, the next process in the queue is signalled when I
the operations are completed.

Languages used to program parallel computers have to express the parallelism in an
application or its algorithm to each parallel processor and provide mechanisms for
communication and synchronization. Without appropriate programming languages and
paradigms, the computational speed of parallel computers cannot be fully utilized and
errors may be introduced into the application programs. Furthermore, designing and
coding parallel programs is difficult and getting the programs to run is complicated, I
because many implementation and operational details have to be considered in addition to
just coding and testing the algorithm. It is not a simple matter to write parallel programs
that are syntactically and functionally correct, efficient, portable, and cost-effective.
Therefore, identifying suitable languages for parallel computers becomes an important
issue.

Although a programmer tries to think like a computer, this time-honored method is
almost impossible to use with parallel processes because the sequence of events cannot
always be predicted in advance. Moreover, when the code is executed, the code should
be efficient. Achieving maximum code speedup on a parallel computer requires a deep
understanding of the underlying parallel architecture. Astute decisions have to be made
when sections of code are singled out for concurrent execution, and other decisions need
to be made concerning how that concurrent execution should take place.

Currently, application programs that exploit the computational power of a supercomputer
or a parallel computer tend to be tailored specifically to that hardware. As a
consequence, the code is not easily portable to other hardware platforms. The price paid
to gain an increased level of performance may be too high if the code takes too long to
develop or is unmaintainable. The important choice of a parallel language or I
programming paradigm can greatly enhance or detract from the programmer's ability to
write correct, efficient, portable, and cost-effective code.

3.3 Established Languages

For many, FORTRAN is currently the language of choice for parallel computers due to
its maturity and the sophistication of its compilers. However, other languages, such as C,
have a growing user base. Moreover, the operating systems of many parallel
supercomputers are based on UNIX, and C is a very popular programming language with
users of this operating system. Clearly the use of FORTRAN and C have important
advantages because these languages have gained wide acceptance in commercial and
scientific contexts. However, neither language was ever intended to operate on
multiprocessor parallel architectures. Parallelizing compilers, annotations, language
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I extensions, and library calls are four basic approaches that are used to overcome the
inherent limitations of these conventional imperative languages.

Compilers. A parallel computer with a parallelizing compiler permits the programmer to
write conventional sequential code without the need for identifying areas for potential
concurrent or vector execution. The compiler identifies pieces of the program code that
may be run concurrently or can be vectorized. Existing programs can be run on these
parallel computers in this manner using familiar languages, and the programmer is freed
from concerns about where the inherent parallelism exists in his code.

Current parallelizing compilers primarily look at loops to identify parallelism since this is
where most of the execution time for numerical programs is spent The compiler may
generate code to concurrentize loops for execution on multiprocessor machines or
vectorize loops for execution on machines that support vector processing. (Some
compilers, like the Alliant's FX/FORTRAN compiler, will generate concurrent code for
some loops and vector code for other loops.) If each iteration of a loop is independent of
other iterations, synchronization between iterations is not needed, and the loops may
execute concurrently to the extent that processors are available. On the other hand, if an
iteration is dependent on any of the previous iterations, synchronization is required
between iterations. The loops may then execute partially concurrent, that is, up to the
synchronization point. Points in the code where synchronization is needed are identified
by the compiler examining the data-dependence relations of code statements.
Data-dependence testing is required for any form of automatic parallelism detection
performed prior to run time.

Some parallelizing compilers also look for opportunities to vectorize; that is, to utilize
vector processors. In fact, automatic recognition of parallel constructs by a commercial
compiler is a recent innovation, while compilers that automatically identify opportunities
for vectorization have been in existence for over ten years. It is not surprising that the
techniques which automatically detect opportunities for vectorization were modified and
enhanced to detect opportunities for concurrentization. The FX/FORTRAN compiler for
the Alliant FX/80 is an excellent example of an optimizing compiler that looks for
opportunities to create both concurrent and vectorized code.

Annotations. A parallelizing compiler, however, makes conservative decisions about
where to concurrentize and vectorize and may miss opportunities for parallelization. If
more information were made available to the compiler, further optimization could be
performed resulting in the generation of more efficient code and the identification of
other opportunities for parallelization. In the fairly typical FORTRAN code example,

DO 5 I=1,N
5 A(K(I)) = A(K(I)) + C(I)

I
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most parallelizing compilers will generate sequential code because these compilers do I
not typically know if each element in K is unique. Annotations and language extensions
are techniques that have been devised to provide the compiler with additional information
for optimization decisions.

Annotations to the source code provide the compiler with specific information, usually
directed at loops, so that more program parallelism may be identified. Typically,
compiler directives are used to communicate this information. Compiler directives are
usually comments positioned immediately before a loop. For example, the Alliant FX/80 I
takes advantage of these compiler directives. In the FORTRAN code displayed above, a
compiler directive is inserted above the loop to inform the compiler that each element of
the array K has a different value. Therefore, when the directive is added to the code,

cvd$ permutation (K)
DO 5 I=1,N

5 A(K(I)) = A(K(I)) + C(I)

the compiler can now easily optimize this loop for concurrent and vector execution I
[Alliant:88a].

Extensions. There is no standard approach for describing concurrency in an imperative m
language like FORTRAN, but extensions of conventional imperative languages are
frequently used by supercomputer and parallel computer vendors. These language I
extensions are adaptations of the base language that usually focus on particular
architectural features of the machine. For example, doaU is a concurrent loop construct
that allows the iterations in a piece of code to be scheduled in any order. For this reason, I
the following loop needs no synchronization between iterations:

DOALL I=1,N I
AI) = B(M) + C(I)
IF (A(I) >= 0) THEN

D(I) = A(I) + 2
END IF

END DOALL

The Myrias Research Corp., in fact, developed their Myrias SPS system architecture I
based on a programming model which involved the simple addition of one construct,
pardo (similar to the doall above), to the FORTRAN language.

Library Calls. Finally, library subroutine calls are used to provide the programmer with
ultimate control of concurrency and synchronization points on shared-memory machines
and to provide a mechanism to send and receive messages on message-passing
architectures. Typically, the use of library subroutine calls is the mechanism by which
many C programs obtain concurrency on parallel architectures. The programmer can
specify where parallelism exists in the code using library subroutine calls. However, the
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I parallelism has to be explicitly specified by the programmer, and opportunities for
executing code in parallel may be missed.

Illustrated below are two C processes, denoted host.c and node.c, that illustrate the use of
library subroutine calls for sending and receiving messages on the Intel iPSC/2 hypercube
[Intel:89].
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/* The code in this file (host.c) is invoked on the host. It I
* - allocates a group of nodes
* - sets the host process' PID to a known value

- loads the node processes onto the cube I
* - for each of the nodes of the cube it:
* - sends a message to the node
* - blocks on receipt of a message from the node

*1* - prints the node's message out S
#include <stdio.h>
#define CUBENAME *test*
#define NODEPROCNAME *node I
#define NNODES 44
#define HOSTPID 100
#define NODEPID 0
#define MSGTYPE 0
#define BUFLEN 64

main() I
(

char msgbuf[BUFLEN]; /* send/receive message buffer *1
long msglen, /* length of message when sending *1

nnodes = atol(NNODES), 1* number of nodes (convert string)*/ I
node; /* node we're sending message to */

/* allocate a given number of nodes */
printf("Host: allocating %d nodes\n\nm, nnodes); I
getcube(CUBENAME, NNODES, NULL, 1);

/* set the Process ID of the host process to a known value */ 3
setpid(HOSTPID);

/* load the node process onto all nodes with a known process id */
load(NODEPROCNAME, -1, NODEPID);

/* access all nodes */
for (node=0; node<nnodes; node++)(

r* compose a message for sending */
sprintf(msgbuf, "Hello from host...);
/* length of message to be sent--include +1 for end of string *1
msglen = strlen(msgbuf) + 1; I
1* send message to the node *1
csend(MSGTYPE, msgbuf, msglen, node, NODEPID);

for (node=0; node<nnodes; node++)(
I* wait for receipt of next message *I
crecv(MSGTYPE, msgbuf, BUFLEN);
/* print message out and continue *I
printf(mHost: received msg: %s\n", msgbuf);)

/* kill any remaining processes on cube--just to be tidy *I
killcube(-l, -1);
/* release node allocation *1
relcube(CUBENAME);
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* The code in this file (node.c) is loaded onto each of the nodes

" of the cube by the host process. The node program then:
- blocks on receipt of a message from the host process

* - composes a message for the host

* - sends the message to the host

- exits

#define CUBENAME Otest"
#define NNODES 04"
#define HOSTPID 100
#define NODEPID 0
#define MSGTYPE 0
#define BUFLEN 64

main()
(

char msgbuf[BUFLEN]; /* send/receive message buffer */
long msglen, /* length of msg when sending */

nnodes = atol(NNODES); /* number of nodes in allocation */

/* wait for receipt of next message*
crecv(MSGTYPE, msgbuf, BUFLEN);

/* print message out when it is received */
printf(ONode %d: received message: %s\no, mynodeo, msgbuf);

/* compose a message to send */
sprintf(msgbuf, "Hello from node %dw, mynode());

/* length of message to be sent--include +1 for end of string */
msglen = strlen(msgbuf) + 1;

/* send message to the host */
csend(MSGTYPE, msgbuf, msglen, myhosto, HOSTPID);

printf("Node %d: process exiting...\n\nm, mynodeo);
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When the host.c program is started it loads the node.c onto all available nodes in the
hypercube. The library subroutines that are used in the example are load, csend, crecv,
relcube, and killcube. The host sends a message to each node. The host waits for a
message from each node and prints the message on the screen. When all the nodes have
responded with their messages, the host cleans out the cube. The node program waits for I
a starting message, then simply copies a string into a message buffer and sends the
message to the host. The nodes only communicate with the host, not at all with each
other. Notice for every csend, there must be a corresponding crecv.

Typically, languages for message passing machines provide library subroutines to
perform both synchronous and asynchronous message passing. The above example
illustrates a synchronous send and receive which is also referred to as a blocking send and
receive. A program executing a blocking send or receive waits until the send is complete
or the message arrives at a specified location before it continues processing. An
asynchronous send or receive does not block. The status of the send or receive may be
checked at a later time. For example, after a non-blocking receive is issued, the program I
performs other work not dependent on the message expected to be received. The
program anticipates that the message will be received when it needs the information. 3
Summary. All four of the approaches discussed above (parallelizing compilers,
annotations, language extensions, and library calls) are used to assist in executing
languages on parallel computers and are very popular with parallel supercomputer and
parallel computer vendors. However, these approaches have several limitations. Most
important, when an application is first described in an imperative language, and when the I
serial code is then analyzed by the compiler or modified by the programmer, some of the
inherent parallelism in the application may not be expressed in the actual parallel code.
Secondly, the resulting code is usually not portable to a different parallel computer. Even I
in the case of a parallelizing compiler, the serial code may have been altered to allow a
particular parallelizing compiler to recognize the loops that ought to be executed
concurrently. These modifications to the original code may imply that it is not as
portable as it once was. Finally, the resulting code is often difficult to debug. For
example, most parallelizing compilers will not concurrentize a loop that has input/output
statements. However, without output statements, it may be difficult to ascertain the
values of variables during the execution of the loop.

Manual parallelization, using library subroutine calls, also can make debugging very
challenging. For example, a misplaced call to a barrier library routine (i.e., a wait for all
processors) or a missing call to a send routine (i.e., csend in node.c), when there is a
corresponding call to a receive routine (i.e., crecv in host.c) waiting, are common
programming errors that are difficult to find. For these reasons, new languages and
different software paradigms are fruitful areas of ongoing research. Indeed, it may be
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t necessary to change the language or the paradigm in order to obtain the best performance
[Bell:89].

3.4 New Languages and Paradigms

New languages and software paradigms allow programmers to express parallelism in a
more natural way. There are many parallel programming languages available, each
having its own advantages and disadvantages. These run the gamut from procedural
languages with tasking capability to functional and object-oriented languages.

In this section, four different languages and paradigms are described. In particular, data
flow languages, Linda, Ada, and object-oriented languages, are used as the examples of£new or novel approaches to programming parallel computers. Although there are other
approaches/languages for obtaining concurrency that are certainly worthy of discussion
(notably, concurrent logic languages), those discussed here are currently popular and
provide good examples. For each of the languages and paradigms, the discussion will
include a tutorial on how the language/paradigm expresses parallelization, the
commercial availability of the language/paradigm, and in what applications, in particular
C3 applications, the language/paradigm is used.

3.5 Data Flow Languages

i Parallelizing compilers for imperative languages like FORTRAN attempt to identify
actual data dependencies vis-a-vis the artificially imposed dependencies which are caused
by the nature of these languages. This is a very difficult problem for these compilers to
adequately resolve because opportunities for parallelism in imperative languages are
frequently obscured. For example, programs often have loops where each iteration is
either dependent on the current or a previous iteration, or is independent of all previous
iterations. The compiler, however, must attempt to identify any data dependencies. For
this reason, the compiler is forced to make conservative decisions and will generate
sequential code if it is given no other information. These difficult situations arise partly
because FORTRAN programs carry an implicit state of computation (history-sensitive)
and have destructive updates (e.g., can modify a variable and change its value).
Therefore, generating data flow graphs that identify all the potential parallelism in
imperative languages is difficult because only the most obvious parallelism will be

5 represented.

Programs written in a data flow language, on the other hand, can be directly translated5 into data flow graphs that identify all the inherent parallelism in the algorithm. Each data
flow graph is a directed graph in which nodes represent functions or operations and eachg arrow or arc between nodes represents data dependencies. Data flow graphs provide a
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visual representation that makes all data dependencies explicit. Data flow graphs are the I
machine language of data flow computers. The parallelism exposed using data flow
graphs and data flow languages resides at the instruction level and is referred to as fine- 3
grain parallelism.

Data flow languages are actually an off-shoot of functional languages and, therefore, are 3
similar in nature. Functional languages carry out computations by the application of
functions, i.e., the evaluation of expressions. Writing programs in a functional language
is similar to writing mathematical equations. Advocates of functional languages believe I
that the concise form of these programs, coupled with their mathematical foundations,
allow these programs to be proved correct by mathematical analysis, thereby leading to 3
error-free software.

Tutorial. To illustrate the utility of data flow graphs, let's begin by examining a typical
FORTRAN code segment where each statement has an identifying label:

I: P= X + Y
2: Q = P / Y
3: R= X *
4: S = R- Q
5: T=R* P6: U =S/T

To produce this code, a programmer has to make arbitrary decisions regarding the I
ordering of some of these statements. For example, it is immaterial whether statement 2
is executed before or after statement 3 as far as the intended algorithm is concerned.
Similarly, the ordering of statements 4 and 5 is also arbitrary.

In figure 3-1, the data flow graph for the previous FORTRAN example clearly shows 3
which statements can be executed concurrently. Data flow graph nodes are said to fire
when there is data or a token at each of its incoming arcs. Therefore, more than one node
may fire at a time. After the input tokens are absorbed, and the function or operation is I
executed, the result (new token) is placed on all outgoing arcs to be sent to other nodes.
In the previous example, when node 4 receives tokens from node 3 (result R) and node 2
(result Q) it can fire, placing result S on the arc toward node 6. The parallelism hidden in I
the FORTRAN code segment can be clearly seen in the data flow graph. After the node 1
operations have been completed and a token (or result P) is placed on its outgoing arcs (to
nodes 2, 3, and 5), node 2 and node 3 can fire concurrently. Similarly node 5 can fire
after node 3 is completed and node 4 fires after node 2 processes its input and generates a
result. In other words, a node can fire as soon as all the data that is needed at that node is
made available.

I
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I Figure 3-1. Data Flow Graph

Analysis of the data flow graph shown in figure 3-1 [Hwang:84, Ackerman:82] identifies
two opportunities (nodes 2,3 and nodes 4,5) for concurrent execution of nodes.
Moreover, this data flow graph explicitly shows all the parallelism inherent in the3 FORTRAN code and, equally important, no other data dependencies. For this reason, the
graph depicts only a partial ordering of operations while the FORTRAN code imposes a
complete, though arbitrary, ordering of the operations sequence.

Data flow languages/graphs can be thought of in terms of mathematical functions;
programs written in a data flow language contain no notion of implicit present state,51 program counter, or storage. Referring back to the previous FORTRAN example, if the
code for statement 2 has just been executed, then values for variables P and Q have been
stored in memory. In addition, the program counter is pointing to statement 3, but
statement 3 has not yet been executed. The value of R stored in memory is either
undefined or has an assigned value from an earlier calculation. Thus, the present state,
program counter, and values in storage of the calculation are clearly known. However, in
the data flow graph, after node 2 has completed firing, the only fact that can be concluded
about data on the arcs or about the nodes is directly related to the actual data
dependencies shown in the graph. For example, if node 2 has just completed firing, then
node 1 had to have fired at least once. There is no present state, storage, or program
counter. These concepts are meaningless in the context of the data flow graph. The
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information necessary to perform the algorithm is expressed in the graph by virtue of the I
arcs, nodes, and the tokens. At first data flow languages may seem frightening to
programmers accustomed to conventional programming techniques, but, in fact, it is just
those features of an imperative language that make writing code for parallel processors
much more difficult.

The following example Id code computes the inner product of two vectors, A and B.

def ip A B = I
( s= 0.0
in (for i <- 1 to n do

next s = s + A[i] * B[i]
finally s )); a

At first glance the Id code looks similar to the functionally equivalent FORTRAN code.

S = 0.0
DO 10 I = 1,N

S = S + A(I) * B(I)
10 CONTINUE

However, the Id and FORTRAN models of computation are different in two important 3
ways.

In the FORTRAN model, the variables "S" and -r' correspond to memory locations that
are updated during each iteration. Therefore, the model assumes that only one iteration
will execute at a time. The variables "s" and "i" in the Id model do not correspond to
memory locations. For example, at the completion of the Id loop there will be n+l "s"
variables where the final value of "s" corresponds to the value of the function ip.

Moreover, in the FORTRAN model, the assumption is that the iterations are computed
one at a time, in order from I to N. While in the Id model, the assumption is that all n
iterations will be started simultaneously and executed concurrently. The only limit is the I
data dependencies of the computation itself. In this example, the only data dependency is
the computation of the next "s" based on a previous "s". However, the n multiplications
are not dependent on "s" and, therefore, can be computed in any order or concurrently.

Availability. Computer architectures have been developed specifically to execute data I
flow languages with the above functional concepts. These data flow computers are based
on the concept of data-driven scheduling and computation; that is, operations are
executed as soon as their operands are available. The sequence of operations to be I
executed is based on the data dependencies in the program. Since data flow languages
typically translate into data flow graphs, data flow languages are ideally matched to data
flow computers.

44



I

U Although data flow languages were not originally created for von Neumann architectures
(computers that store programs and data in memory and that use a program counter to
control the execution of instructions), there are compilers for data flow languages that
operate on von Neumann machines. However, these implementations may be inefficient,
because von Neumann machines are not well adapted to support functional concepts that

S,-give rise to potential problems involving overhead and memory storage (i.e., time versus
space). For example, because data flow languages do not have destructive updating, new
copies of variables are created whenever the value of the variable must be modified. This
means that the overhead to manipulate the variables and the number of variables rapidly
increases. More powerful attributes of data flow languages also exacerbate the time

I' versus space trade-off. Similarly, data flow language implementations for parallel non-
data flow machines can exhibit other problems of overhead associated with scheduling,
executing, and completing a task.

A highly visible disadvantage of data flow languages is that the attributes of these
languages also make for slower execution speeds. These include the high frequency of

_I function calls, garbage collection overhead, lack of destructive updating, and recursion.
However, compiler techniques to improve the efficiency of these languages by reducing5overhead problems associated with function calls, garbage collection, and recursion are
active areas of ongoing research.

3 Some functional languages are many years old, while others are still evolving or ha" 2
only recently appeared. These languages have a strong foothold in academic circles, but
are not yet widely used in commercial contexts. For this reason, they still tend to be
viewed as experimental. However, several parallel computers have been designed to
execute data flow and functional languages efficiently; one such machine, the Monsoon,
executes the data flow language Id [Arvind:90]. A Monsoon prototype was delivered to
the Massachusetts Institute of Technology (MIT) this past spring by Motorola, Inc. It is a
16-node system and is capable of processing up to 10 million tokens per second. It willIbe used for experimenting with data flow concepts [Herbst:91].

In addition, there are other efforts underway to place data flow and functional languages
onto commercial parallel-processing machines. For example, Sisal is a data flow
language that is currently implemented on commercial parallel-processing machines such
as the Sequent, Encore, Cray, and the Alliant. In addition, a new language called Haskell
has recently been developed [Hudak:89]. Haskell is a general-purpose, purely functional
programming language that contains the latest modem programming features. Besides

having a potential to be a functional language standard, it is intended to operate on
parallel computers.

Some recent performance data on Sisal may be of interest; this data appeared in
[Cann:91]. In the table, Sisal and FORTRAN on the Cray X-MP/48 (concurrent-vector)
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are compared on three benchmarks. The first table shows run-time in seconds. The I
second table shows memory image size in kilowords.

Table 1. Run-time in Seconds

One CPU Four CPUs

Program Sisal FORTRAN Sisal FORTRAN I
Richard 0.39 0.35 0.14 0.11
Simple 13.52 13.49 4.90 12.37
Weather 5.93 13.92 1.84 13.51

Table 2. Memory Image Size in Kilowords0

Program Sisal FORTRAN

Richard 93.8 113.4
Simple 544.2 406.0
Weather 566.0 163.9 3
These data suggest that the traditionally sluggish performance of functional languages
can be substantially improved by modem compiler techniques-perhaps even to the point
where they are competitive with imperative languages. If so, they may come to offer
attractive advantages for use on parallel computers, because there are no hidden data
dependencies to obstruct parallelization of the code.

Applications. One question that might be asked is what types of problems are solved 5
using functional and data flow languages. The general answer is that these languages are
good for solving problems that require potentially thousands of tasks running
concurrently. In addition, these languages are good for a programmer who seeks a more I
natural way to describe complex problems which are to be automatically run
concurrently. In particular, the Computational Structures Group at MIT has used the
language Id running on a data flow simulator to solve dynamic programming problems, I
partial differential equations, Monte Carlo simulations, and simulated annealing
problems. 3
Functional languages and data flow languages are being used in other ways as well. They
can be used for writing system specifications [Burton:88]. These specifications are 3
executable and can be verified through the use of mathematics. Data flow languages
have been used at MITRE for simulating neural networks and for prototyping algorithms
[Smotroff:90. Furthermore, new task partitions of applications for eventual parallel I
execution on different target machines can be identified by exposing the inherent
parallelism of the application [Michaud:91]. At MITRE, techniques are being developed
to aid in architecture-independent parallel programming by parsing algorithm data flow
graphs. The data flow graphs are then annotated with cost models. Improved
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I architecture-specific cost metrics which reflect architectural characteristics such as

contention and saturation are being developed to guide in the development of the actual
partition [Gill:89, 90].

Summary. Data flow languages provide a mechanism that implicitly captures the
inherent parallelism of an application program and, therefore, frees the programmer from
concerns of synchronization and interprocessor communication. Data flow languages
may be a vehicle to more fully take advantage of computational power that exists in
today's parallel computers, as well as the supercomputers of the future.

3.6 Linda

Linda is a parallel-programming paradigm that was first described by D. Gelemter in
1982 at Yale University [Gelemter:88]. Linda basically is a library that is called from
existing languages (i.e., C and FORTRAN) to implement concurrent tasks. As parallel
machines become the wave of the present, tools are increasingly needed to assist
programmers in creating parallel tasks and coordinating their activities. Linda was
designed to be such a tool. Linda was designed with three important goals in mind: to be
portable, efficient, and easy to use.

Tutorial. The fundamental concept behind Linda is relatively simple: information to be
shared by multiple programs or multiple processes is placed in a memory area called a
tuple space (TS). The data items themselves are called tuples. TS is like an associative
memory, since tuples are selected on the basis of an element-by-element match rather
than by using a specific address. A tuple is an ordered sequence of data items. For
example, the tuple ("smith", 50, true) contains three data items: a string, an integer and a
boolean.

Linda performs the following four primitive operations on tuple space:

out place a tuple in TS

i match a tuple and remove it from TS

rd match a tuple and return a copy of it

eval create a live tuple (a new process).

For example, the operation out ("smith", 50, true) generates the tuple ("smith", 50, true)
and places it into TS where it becomes available to other processes. In figure 3-2, the
operation out ("smith", 50, true) adds this tuple to tuple space while the operation in
("smith", ? age, ? married) withdraws a matching tuple from tuple space. The operation
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rd ("smith", ? age, ? married) reads a matching tuple without removing it. Because there i
is no synchronization necessary between the process doing the out and the process (or
processes) doing the rd or in, the out operation is never suspended or blocked; therefore,
the process that elicited it continues immediately. In addition, there can exist any number
of copies of the same tuple in TS.

out ("smith". 50. true) rd ("smith". ? age. ? married) 5
i("smfth". ? age. ? marrnedi

("mfthb. 50 true ("srftb. 0, rue

Figure 3-2. Tuple Space Example I
Tuples in TS are accessed by matching them against a pattern field. The parameters 5
denoting the tuple can be expressed by either actuals (a value) orformals (a variable).
Actuals are matched exactly andformals must match a value of the same type. For I
example, the operation

int age;
boolean married; I
in (Ismith', ?age, ?married);

will match any tuple in TS whose first field is the string "smith", and whose second and 3
third fields are an integer and a boolean, respectively. Here "smith" is an actual because
it is a string, and age and married are formals. In this case, the important key is the string
"smith", and the tuple that it matches is ("smith", 50, true). That is, age is assigned 50I
and married is assigned true, and then the tuple is removed from TS.

If there is nothing in TS that matches the tuple, then the current process is suspended until I
a match is made. (Linda also provides functions that return false when no match is found
rather than suspending the process.) On the other hand, if multiple tuples are matched,
then which one to choose is an arbitrary decision. It then becomes the programmer's
problem to keep track of the multiple tuples that are being dumped into tuple space. An
extra field, for example, could be added to the tuples to keep them in order.

All of these types of tuples are called passive tuples. There is no operation that can
modify a tuple in place, as in conventional languages. In order to modify a tuple, the
tuple must be physically removed from TS by way of an in, then it can be modified and
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I placed back into TS using the out operation. This ensures complete protection from
overwriting the variable, eliminating the need for semaphores or monitors for protecting
the variable. While tuples can be of any size, the original Linda paradigm does not
provide for indirect addressing (e.g., arrays). Instead, complex data structures can be
created by means of the operator eval.

The operator eval is like the operator out, except that eval creates a live tuple, whose
fields are not evaluated until after the tuple enters TS. For example, if fmar is a function,
then the operation eval ("smith", 50, fmar(x)) creates a new process (a live tuple) to
evaluate the function fmar(x), which runs in parallel with the calling process. Eval
implicitly forks a new process to perform the evaluation. A live tuple is created which is
independent of, and can be executed in parallel with, the task which created it. When the
process is completed, the resulting (passive) tuple is left in TS, as if an out had created it.3 To create multiple parallel processes, multiple evals can be issued. In this way, dynamic
tasking becomes a reality and programmers can build any kind of data structures they
need out of tuples.

A complex data structure, for example, can be created in TS by creating different
processes for each part of the structure. An eample of this type of a program might be
one whose result is an N by N matrix. Each element of the result can be expressed by
using multiple evals as in the following C-Linda code segment:

int i,j,max;
for (i=O; i<=max; ++i)

for (j=O; j<=max; ++j)
eval (OM', i, j, compute(i,j)); /*fork process */I

As soon as each compute(ij) process is completed, it turns into a passive tuple and
becomes the element in the i-th row and j-th column of the matrix identified by "M", all
of which is located in TS. Each element of the matrix becomes visible to all processes as
soon as it becomes a passive tuple.

U Using Linda operations, the programmer can send a message from one process/processor
to another without worrying about the underlying architecture and without worrying
about the other process. Tuple space is conceptually both shared and global, and
communication through it is possible between processes at any time. Processes need to
know nothing about each other. They do not need to know where the message is coming
from or where it is going. Since the compiler does most of the work of communication
and synchronization, it is easier to program in this manner. Since the processes are
loosely connected, the programmer can more easily develop each module independently
from the rest. It is the Linda implementation rather than the programmer that deals with
the physical distribution of the data.
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Most Linda implementations contain both a run-time kernel and a preprocessor or a i
compiler. The kernel is language-independent, and it manages the processes and
implements interprocess communication. Because the tuple space concept requires a i
great deal of searching on each operation, a preprocessor is usually used for facilitating
the run-time search. The preprocessor analyzes the various Linda operations and divides
them into groups according to the type of tuple space access. For example, ins and rds I
are matched with outs and evals (and vice versa) and placed into groups based on
matching tuple patterns. They are then mapped onto the appropriate family of routines in
the run-time library.

Availability. The Linda system has been implemented on several different computer
architectures. Two of them, the S/Net Linda kernel and the VAX-Network Linda kernel,
are on distributed systems. The two systems, however, are implemented very differently.
The S/Net version relies on an out being broadcast to all nodes, whereas the VAX 3
implementation is the inverse. An out is a local command but an in is broadcast.
Another Linda kernel, for the Intel iPSC hypercube, relies on point-to-point
communication where tuple space is implemented as distributed hash tables that scale I
with machine size. Systems have also been written for the Encore, Sequent, and Alliant
shared-memory machines which run much faster and are also much simpler than the
network types. An S/Net-like architecture called the Linda Machine, with hardware that
supports tuple space operations, is under construction at AT&T Bell Laboratories. In
addition, Linda is commercially available from Scientific Computing Associates of New i
Haven, CT, for the Encore and Sequent shared-memory machines. A group at Yale
distributes a simulator for Sun workstations.

There are development and debugging tools available for Linda. At Yale University, a

tuple space visualization tool has been developed called TupleScope. It is a mouse-
driven tool that displays a "snapshot" of the state of tuple space at any given time. A
series of windows is displayed, each one tagged with a separate tuple class, and within
each window, each tuple in the class is depicted by a sphere. The contents of a specific
tuple can be displayed by selecting with a mouse the particular sphere. According to
Carriero, this tuple space visualization tool promises to be a valuable debugging tool
[Carriero:89]. There is also an emacs-based editor called Linda Program Builder 3
[Ahmed:91].

The Linda paradigm has a number of advantages for the applications programmer. First, 1

it is easy to use, because the four basic operations are simple to understand, and they are
designed to be used in conjunction with established languages. Also, they deal easily
with process creation and with communication and synchronization by way of the tuple
space concept. Secondly, Linda clearly expresses parallel data structures by way of live
tuples, which is a very natural way for the programmer to conceptualize them. Since the
implementation is transparent to the programmer, Linda's uncoupled approach to
programming in parallel facilitates the programmer's communication job and minimizes
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I his interaction with the operating system. Thirdly, because the programming model is not
tied to the underlying architecture, it is portable even between shared and distributed-ft memory machines.

On the other hand, Linda has its disadvantages. Because Linda is such a high-level
programming model, its efficiency relies heavily on the efficiency of the particular Linda
kernel implementation. The tuple matching process can be slow, depending on the type
of machine and the implementation. In addition, because multiple tuples can be matched
in tuple space and because the order of Linda operations is not guaranteed, the burden
remains on the programmer to use the tuple space concept with care. Critics of Linda are
not convinced that it has any advantages over traditional message-oriented systems or
monitors, and they fear that Linda's lack of synchronization is potentially dangerous
[Davidson:89].

Applications. Cogent Research, producers of transputer-based parallel workstations,
have implemented a version of Linda called Kernel Linda. Their parallel-operating
system, QIX, uses Kernel Linda for interprocess communication, and Kernel Linda is
also available for applications programming. Cogent Research has also implemented

I, Kernel Linda bindings for C, C+ , and FORTRAN.

Linda is currently in use at MITRE in the Joint Message Analysis and Processing System
(JMAPS) project. MITRE implemented an object-oriented version of Linda that uses
shared memory. The design extends Linda to handle complex structures, or objects, in
addition to fundamental data types. It also handles multiple tuple spaces and tuple spaces
within tuple spaces. Linda operations are employed as the only means of interprocess
communication in a logically and physically distributed system. In the JMAPS design, a
Linda tuple space is regarded as a general-purpose, concurrent, first-class persistent
naming environment (a view adopted from symmetric programming [Jagannathan:89]),
and, as such, tuple spaces are used in many capacities. To improve accessibility, all3 system-wide information is stored in a global tuple space used as a distributed-file
system.

5 It has been found that the use of Linda extensions, combined with the object-oriented
approach, has been easy to implement, and in addition, the project was easier to
conceptualize. In actuality, however, the movement of large data structures and arrays
can be inefficient. The investigation into issues such as efficiency and fault tolerance has
just begun.

U Summary. Linda is still in its infancy. More tools are needed, and more machine
environments and language models need to be tested, but Linda's developers are
confident that true progress is being made to that end.

I
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3.7 Ada i

Ada is the standard programming language of the Department of Defense (DOD) 3
[DOD:83]. Originally created to meet the programming needs of DOD-embedded -

computer systems, Ada was designed to support software engineering principles for
programming large real-time systems. This language, specified jointly by academia, I
industry, and government, from its inception, incorporated important software
engineering principles and features of languages popular in the early 1970s: to create
reliable, maintainable, efficient, and understandable software. As a result, Ada was I
designed to support the evolution and maintenance of reusable, portable, and real-time
software [DSB:87]. f
Most important to our discussion is the fact that Ada was designed from its inception to
be able to run tasks concurrently. Ada is the first widely accepted programming language
with its own model of concurrency. This permits the application programmer to write
portable concurrent programs. Ada achieves concurrency through the tasking model. A
task is an Ada program unit that contains a separate sequence of instructions that may be I
executed concurrently with other tasks. Tasks were designed to be executed on
multiprocessor systems, or time-sliced on a uniprocessor machine. Since the number of
processors on parallel computers may be less than the number of tasks, it is important that
Ada was designed with the capability to map available computational resources to logical
tasks. £
Tutorial. A task, like other Ada program units (e.g., subprograms) is defined by a
specification and a body. In general, a specification identifies and describes the visible
information, specifies which information may be used, and describes how it may be used.
The body contains the code that actually performs these functions. In a task specification,
however, only the entry points into the task are defined and, in fact, the task entries look 1
like procedures. Ada's task declarations cannot stand alone as separate compiler units;
they have to be nested inside a parent unit such as a block statement. The reasons for this
have to do with the rules that define a task's activation and termination. Every Ada task
has a master and tasks are activated when the task's body is elaborated1 at the end of the
declarative part of the master program unit (i.e., task activation is implicit). Once the i
master's elaboration is complete, the task can start to run.

There are complex rules for terminating tasks, but suffice to say that a task terminates 3
when it has completed its work and when all subordinate tasks have been terminated.
Ada permits tasks to be created on the fly, which makes the rules for task masters and 3

1 In Ada terminology declarations are elaborated, statements are executed, and expressions are evaluated £
[Wegner:80]. The elaboration of a task body makes the body come into existence and from then on it

may be executed. 3
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-- task termination more complex, but their basic concept of dependence on the master task
holds.

Tasks without any entries run independently of each other and have no explicit
synchronization with other tasks. There is implicit synchronization with the task master,Iin that the master may not exit until the task has terminated. Tasks without entries
represent a good paradigm for divide and conquer type problems, but they are not
powerful enough to solve many other types of problems, as will be described later. ForI this reason, Ada provides a more sophisticated and encompassing synchronization
mechanism. The rendezvous, a form of remote procedure call, is the Ada mechanism for3 ttask coordination and for sharing of information. A rendezvous occurs when one task
calls an entry in the other task, and the receiving task is prepared to accept the entry.
Rendezvous is best explained by comparing it to a telephone. One person calls another
person. The phone rings (and the caller is blocked) until the recipient answers the phone.
It is possible that the recipient is sitting by his phone waiting for it to ring. Once the

i phone rings and the recipient answers, the two tasks are in a rendezvous. When the
rendezvous (phone call) is over, the two tasks proceed independently.

It is important to note that callers of a given task entry are queued in first-in, first-out
order. In addition, each task may have a priority. Priorities are used only to indicate
relative degrees of urgency and are given to assist the implementation in the allocation of
processing resources to parallel tasks. The end result is that the highest priority tasks
execute when the resources they require become available. Scheduling, using priorities,
therefore, is preemptive. However, priorities are not to be used for task synchronization.
The structure of the actual Ada code is asymmetric in that the rendezvous or entry point is
declared in one task, not both tasks. An example task specification (which shows only
the code segments of interest) is shown below:

task Ti; -- specification of task 1

task T2 is -- specification of task 2

end; entry E; -- entry declaration

In this example, an entry named E is declared in task T2 (similar to declaring a
variable, I, an integer in a FORTRAN program). There is no entry declared in task T1.
However, the body of task TI has ar, entry call statement. In task Tl's body, the entry
call looks like a procedure invocation and is Tl's rendezvous (synchronization) point.

task body Ti is -- body of task 1

begin

T2.E; -- entry call

end;
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Moreover, T2's task body contains the accept statement which specifies the actions to be I
performed. Within T2's task body, the accept statement does not name the task (in this
case, TI) but it does name the entry point, as illustrated below. This allows tasks other I
than TI to have entry calls to E in T2. Since accept statements do not name the task
whose entry call is to be accepted, these service tasks can be designed as general-purpose
utilities similar to subprograms.

task body T2 is -- body of task 2 I
begin

accept E do -- accept statement g
end; 3

end;

The above example of an entry call (E) was actually an unconditional entry call because I
the calling task (TI) unconditionally waits until the called task (T2) accepts the call.
Entry calls can be either unconditional, conditional, or timed. One of the most commonly
used facilities is the conditional entry call which attempts an immediate rendezvous. If
the rendezvous is not immediately possible, the caller is not queued, and the processing
continues with the next statement. A timed entry call is executed when the called tasks ,
accept the entry call within a specified time value.

Another facility, the Ada select statement, is used to choose entries nondeterministically 5
from a set of outstanding requests. The called task may use a selective-wait statement to
accept any one of a number of alternatives. Guards (conditional tests) in front of the
select alternatives provide further control.

The Ada tasking model with the rendezvous mechanism supports the implementation of
many classical concurrency paradigms. In general, applications that have a need for
concurrent actions, routing messages, managing shared resources, and interrupt handling
can be implemented using the tasking mechanism. More specifically, a rendezvous can 3
serve as a semaphore protecting a section of code. Different scheduling than
first-in-first-out queues can be implemented by using entry families. Finally, tasking
paradigms (such as monitors and barriers) and synchronization protocols (such as gates I
and self-scheduling for-loops) can also be implemented in terms of the Ada task structure.

Ada also possesses many other features that are useful for solving problems requiring I
concurrent processing. For example, Ada allows for families of entries to ensure ordered
regular interaction among tasks. 3

5
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I Availability. The Ada Joint Program Office (AJPO) is responsible for maintaining a
stable Ada language definition. The AJPO accomplishes this task by applying the criteria3 specified in the Ada Programming Language document to validate that a given Ada
compiler conforms to its standards. In the past, compilers that received a validation
certificate from the AJPO could use the DOD's trademark Ada name, but Ada has
recently become public software and no longer carries the DOD trademark. All validated
compilers implement the full language. However, Ada validation does not guarantee that
code generated by the compiler will meet performance requirements or be suitable for a
particular application.

3Ada is a complex, sophisticated language. The Ada language, however, continues to
evolve through two well-controlled procedures called commentaries and revisions. A
commentary is an official interpretation of the Ada standard that has been approved by
the Director of the AJPO. These commentaries meet ANSI requirements and are approved
by the International Standards Organization [SigAda:89]. The Ada 9X Project is
responsible for revising and updating the Ada standard. During 1989, revision requests
were submitted by interested people in the Ada community. These revision requests will
form the basis for a revised language-requirements document and the language revision
itself. Alternative methods for real-time scheduling, object-oriented programming, fixed-
point arithmetic, and implementation dependencies affecting performance predictability
are some of the issues under discussion [AdaIC:90a].

Many validated Ada compilers and associated support tools are currently available. For
example, 272 base compilers and 133 derived compilers have been validated by the
AJPO as of 1 May 1990 [AdaIC:90b]. Once a compiler has been validated, the vendor
will typically spend time improving its execution speed and quality. Many of the
validated compilers are specifically designed for parallel computers and supercomputers.
For example, there are compilers for the Alliant FX/80, CONVEX, Cray X-MP, Encore
Multimax 320, iPSC/2 Parallel Supercomputer, and Sequent Symmetry.

UThere are many advantages to using the Ada programming language. Ada was
specifically designed to support the evolution and maintenance of reusable, portable, and
real-time software. Ada was designed from the beginning to support concurrent tasks on
multiprocessor systems. The concurrent task feature was not added on as an afterthought.3 Validated Ada compilers exist on many different machines.

On the other hand, there are a few disadvantages in using the Ada programming language
for parallel processing. Although the concepts of the rendezvous and the tasking model
are very powerful, these concepts do not match any specific parallel-hardware
architecture well. Secondly, the semantics of the Ada language often give automatic code
parallelizers difficulty. In particular, parallel processes and exceptions (predefined or
user-defined error conditions, such as, divide by zero) do not interact very well. It is at3 times difficult to produce the same results with parallel processing as the comparable
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serial code when an exception occurs on one of the parallel processes. Finally, Ada doesU
require a significant learning curve in order to take full advantage of the capabilities that
it offers for parallel processing. I
The Ada tasking model maps easily to uniprocessor and shared-memory multiprocessor
architectures. On the other hand, Ada is more challenging to implement on distributed 3
systems. Writing code in any general-purpose language (FORTRAN, C, or Ada) for
execution on distributed systems is difficult because the specific-target-hardware
configuration usually has to be heavily factored into early design activities. Researchers I
are actively investigating different approaches to distribute an Ada program across
multiple machines.

MITRE has several on-going research efforts investigating Ada concurrency and run time
issues. For example, MITRE has developed a distributed simulation for the Strategic 3
Defense Initiative (SDI) program to study SDI effectiveness as a function of space-based
platform architecture and battle-management algorithms. The simulation is called the
Experimental Version Prototype (EVP) and contains roughly 20,000 lines of Ada code. I
The simulation code incorporates many of Ada's advanced capabilities. MITRE
originally developed the simulation on a DEC VAX and on Sun Workstation computers
and then ported the simulation to the three different shared-memory parallel machines
built by Encore, Alliant, and Sequent to test the model [Bensley:88a].

MITRE personnel also participate in Ada professional and standards organizations. One
of the more important issues that the MITRE Ada Speciality Group is involved with,
through the Association for Computing Machinery SigAda working groups, involves the I
question of real-time processing. The Ada tasking paradigm evolved in part to meet real-
time programming requirements of the 1970s and was not designed to meet contemporary
standards for flexible scheduling strategies and priorities in real-time programming I
environments. To overcome this limitation, researchers have developed a variety of
approaches for improving the real-time performance of Ada applications. The MITRE
Ada speciality group also works with the Ada 9X committee to document and define
changing requirements for the language.

Applications. Several large Air Force systems are using Ada. An impressive example of
an Ada program is the TRW Defense Systems Group's Command Center Processing and
Display Segment Replacement (CCPDS-R) system at Cheyenne Mountain. The I
Preliminary Design Review demonstration consisted of 130 Ada tasks executing on a
network of three VAX nodes [Royce:89, Royce:901. This interconnection of tasks
required 450 task-to-task interfaces.

TRW used a message-based paradigm with buffers to build the Network Architecture
Services (NAS) to handle interprocessor communication between Ada programs running
on different processors. NAS is implemented in an Ada environment and uses

56



operating-system services to implement inter- and intra-processor communication. NAS
is a distributed executive and CCPDS-R uses NAS as a building block. These building3 blocks are integrated with application interfaces to develop demonstrations.

Several other new programs using Ada have recently been awarded by the Air Force.
These include the Icelandic Air Defense System (IADS), and the E-3 Radar System
Improvement Program (RSIP) upgrade to the Airborne Warning and Control System
(AWACS). IADS will operate on a VAX connected to workstations that function as
display consoles for the operators. RSIP will operate on a four-processor militarized
MIPS computer system. Separate Ada programs will execute on each processor
concurrently. Communication between processors will be handled by the operating
system dsing message passing. Finally, Ada is also being employed in system upgrades
of the COBRA DANE System Modernization (CDSM), a ground-based, large-scale
phased array radar.

Summary. Ada is the first widely accepted programming language with its own model
of concurrency as well as one which encourages sound software engineering practices.
Ada is being used in several DOD programs for implementing real-time embedded
systems and many commercial projects. More compilers are being validated with a
special emphasis on Ada compilers for multiprocessor machines. As the technology in
hardware and compilei design continues to improve, Ada may become one of the most
important software environments for multiprocessor machines for parallel processing
applications.

3.8 Object-Oriented Languages

Object-oriented programming is a style of programming that has been popular in the
computer simulation and artificial intelligence communities for some time. Lately it is
beginning to gain favor among commercial software developers because of the
modularity and code reusability it provides for software development. It is also believed
by some of the leading multicomputer system researchers and designers, Seitz at Caltech,
Hewitt and Dally at MIT, to be a good model of computation for distributed memory
message passing systems.

Object-oriented programming traces its roots to Simula-67, an object-oriented simulation
language [Kreutzer:86]. Smalltalk-80, developed at Xerox PARC [Goldberg:83], is a
purely object-oriented language and program development environment. Flavors and
CLOS are object-oriented extensions to Common Lisp [Keene:88]. C++ [Lippman:89,
Stroustrup:87] and Objective C [Cox:86] are object-oriented extensions to the C
language. Actors [Agha:86] is an object-oriented model for concurrent systems
developed by Hewitt of MIT and Agha of Yale University. In the literature, the term
"actors" is frequently used to mean concurrent objects, that is, objects that are
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independent in the sense that they may execute code concurrently. Cantor [Athas:89] is I
an object-oriented language that is being developed at Caltech to be used on Seitz's
Mosaic 16,000 processor multicomputer. Seitz was one of the original designers of the 3
hypercube topology. CST is a Smalltalk-80 based concurrent programming language
being developed at MIT to be used on Dally's J-Machine [Dally:89].

Tutorial. The model of computation is the programmer's view of the machine. It is the
model he uses to develop his program. In the computational model of traditional top-
down development, data and control functions are separate, as for example in FORTRAN I
programming. The programmer determines the data structures and functionally
decomposes the problem into a set of subroutines that operate on the data structures. I
In the object-oriented model of computation, the data and control functions are encapsulated in
self-contained program units called objects. These objects communicate with each other by
sending messages. An object can be likened to a real-world entity. It has a state that it
maintains, represented by instance variables, which are memory locations. It responds to
stimuli, represented by the messages it receives. It exhibits behaviors in response to the 3
messages it receives, represented by methods, which are sets of program instructions.

The commercially supported object-oriented languages, such as Smalltalk and C++, allow I
a programmer to define different types or classes of objects. A class definition includes
the source code definition of the instance variables and the message/method pairs
associated with every instance of the class. Inheritance is supported, that is, classes may
be defined as refinements of other classes (for example, a savings account is a special
kind of bank account). Multiple inheritance allows a class to be defined as a refinement I
of two or more classes.

In many traditional programming languages, associating or binding a variable to a certain 3
type (for example, integer, float, savingsaccount) is done at the time a program is
compiled. Polymorphism is the ability of a variable to refer at run-time to instances of
different classes [Meyer:88]. Many object oriented programming languages restrict
polymorphism to the class hierarchy. Suppose savings,.account is a subclass or
refinement of the bank_account class. It is convenient at times to be able to use the idea
that an instance of savings,.-account is also an instance of bank_account. For example,
suppose a program needs to maintain a list of all the bank accounts, some of which are
savings accounts. I
Dynamic binding is the ability to decide at run-time which operation to apply to a
variable depending on its type. Suppose that different methods have been defined for I
printing savings accounts and bank accounts. If a print message is sent to every
bankaccount on the list, then those accounts that are in the subclass savings_account
would print as a savings_account, while those that are only in the class bankaccount
would use the print method defined for a bank_account These features of object-oriented

58



languages are what make them different from many traditional programming languages.
However, there are other features of object-oriented programming that makes it a good
model of computation for parallel programming.

Object-oriented programming is a good model of computation for distributed-memory
multicomputers, because it minimizes global information and because it provides natural
communication and synchronization boundaries. In programming for a multicomputer, it
is a good idea to assign to the same processor data items and code that will be used
together. When writing an object-oriented program, the programmer divides the data and
the functions to control that data up into objects. A side effect of this assignment is that
data and functions that are frequently used together are identified. Thus, object-oriented
programming facilitates the mapping of software to hardware. Most importantly, these
features are a natural part of the object-oriented programming model of computation.

Mapping object-oriented programs onto parallel processors is usually done by associating
instances of objects with processors. When a C++ or Smalltalk object-oriented program
is executed on a sequential machine, the execution of a method that sends a message is
suspended until the message sent has been completely processed. For example, suppose
while object A is executing a method, A sends a message to object B. At this point A's
method execution is suspended until B has completely executed the method associated
with its message. In sequential object-oriented programming only one method is
executing (that is, one message is being processed) at a given time. In parallel object-
oriented programming, many objects execute methods at the same time. Generally this is
accomplished by extending the basic object-oriented message passing model to allow
objects to continue executing after they have sent a message.

ABCL/l, a concurrent object-oriented language developed by Yonezawa of the Tokyo
Institute of Technology [Yonezawa:87], extends the basic object-oriented message
passing to allow the programmer to manage message communication using blocking and
non-blocking sends. Objects maintain queues of messages that are waiting to be
processed to support these extensions. The reader may recall that distributed-memory
machines such as the iPSC/2 and the Symult support both blocking and non-blocking
sends and receives, and each processor maintains a queue of messages on behalf of its
processes.

ABCLI1 supports priority and guarded messages to control synchronization. Whether
real-time programming is an issue in a particular application or not, there are times when
it is useful for an object to process messages on a priority basis. For example, the
programmer may wish to start a number of computations going but is only interested in a
subset of the results. When this subset is obtained it may be desirable to stop the other5 computations from continuing so as not to waste resources. Priority messages are useful
for handling these exceptional situations.
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There are certain situations where the programmer may want or need to allow an object to I
process a certain type of message before another type of message. Typed messages (or
guarded messages) are part of Hoare's Concurrent Sequential Processes model 3
[Hoare:78]. They are supported in the Ada tasking model as described in a previous
section. For example, suppose we have a set of objects that are producing items of
information and another object that is consuming them. Because the rate of producing I
and consuming may be quite different, a buffer object might be used to hold items until
the consumer is ready to process the next one. The buffer cannot accept a consume
message if it has no items to process, but it can accept one as soon as it receives the next I
produce message. Similarly, the buffer cannot accept a produce message if the buffer is
full, but it can accept one as soon as it receives the next consume message. To support
guarded messages, a means of selectively accepting messages must be provided by the
run-time system. This is usually done by providing a message queue associated with
each object. 3
Futures are used in the Actor concurrent object-oriented model developed by Hewitt and

Agha. They act as placeholders for the result of a computation. They allow one or more
threads of a computation to continue until the actual value of another computation is
required. In this way, they provide what is called data-driven concurrency. Before an
object sends a message, it creates a future. When the object sends the message, it
includes the location of the future in the message. When the receiving object completes
the computation associated with the message, it stores the value that is the result of its 3
computation in the future.

For certain operations, a future may be used without knowing its actual value. For 3
example, an object may pass the location of a future as an argument in a message to
another object, or it may assign the location of the future as the value of one of its
instance variables. For other operations, for example, addition, the actual value of the I
result of the computation may be needed. In this case, the value must be retrieved from
the future that holds or will eventually hold the result of the computation. If a value is
requested from a future that has not been set yet, the requesting method execution is
blocked until the future can reply with the value.

To allow a computation to begin as soon as the result of another is available, the Actor
model uses continuations. A continuation is an object that contains all the information
necessary to continue a computation. In most sequential object-oriented models of I
execution, if method L invokes method M, then when M completes executing, it returns
the result of its execution to L. If M's result is required by method N, then L invokes N
passing M's result as an argument In this way L directly coordinates the sharing of
information between M and N. In a language that supports continuations, L can provide
M with a means of invoking N directly, as soon as M's result is available. The advantage 3
of continuations in a multicomputer environment is that more concurrency is possible. L
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i can continue to execute free of the responsibility of providing coordination between M
and N. N can begin executing sooner because it does not have to wait for L to coordinate.

Time Warp is a model of computation for object-oriented distributed discrete-event
simulation that uses checkpoint and rollback to enforce event ordering. In Time Warp,

Ii every event message has a timestamp associated with it that indicates the simulation time
at which the event is to be processed by the receiving object. Associated with each object
are input and output message queues, each kept in timestamp order, as well as a current
state and a stack of old states. Before a message is processed, the object's current state is
pushed onto the old state stack and a new current state is allocated with a timestamp5 equal to the message's timestamp.

If a message that has an earlier timestamp than the current state arrives at an object, the3m object rolls back to a state with a timestamp that is less than or equal to the timestamp on
the new message. As the object rolls back, it returns messages processed out of order to
its input queue and sends anti-messages for those output messages that were sent as aU result of processing input messages out of sequence. When rollback is complete, the
object begins rolling forward by processing the new message and then reprocessing the5 messages that were returned to its input queue.

At MITRE, we have had several projects that were related to Time Warp. In Moving
Time Window, a mechanism was developed to make Time Warp simulations more

efficient [Sokol:89]. In Distributed Object-Oriented Programming, we developed the
SaM synchronization manager, a generalization of the basic Time Warp synchronization

I mechanism, to support general purpose object-oriented programming [Prelle:90, 91, 92].
In Robust Behavior in Object-Oriented Systems, we extended the SaM synchronizationI . manager to support fault-tolerant application processing [Bensley:88b].

Availability. The C++ is frequently implemented with a preprocessor that translates the
C++ into conventional C plus support library routines. Thus, it is fairly easy for
multicomputer developers to offer C++ as a language option on their machines. C++ is
available on the Meiko and on the NCUBE. Although C++ is not currently available on
the Intel iPSC860, Northrup Research has installed it on their system.

Applications. Object Technology Institute (OTI), based in Ottawa, Canada, is a
technology transfer company. Its customers are companies that want to introduce object-
oriented technology into their own companies. They provide both tools and training for
object-oriented software development. Supported by the Defence Research
Establishment, Ottawa, work on the testbed for Electronic Support Measures (ESM)
signal processing research [Barry:87, 89] is continuing at OTI; it now consists of about
100K lines of Smalltalk. (ESM involves finding and evaluating sources of radiated
electromagnetic energy for the purpose of immediate threat recognition. This application
deals with a passive surveillance receiver that intercepts and analyzes radar signals.) This
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application includes handling hard real-time data acquisition and knowledged-based I
signal processing.

The ESM testbed consists of a pre-processor that captures and buffers input signals, four i
to six single board computers that perform the signal processing tasks, and peripherals for
I/O. The testbed uses Harmony, a real-time multiprocessing kernel that supports both i
multiprocessing and multitasking with priorities, using lightweight tasks. It provides
blocking and non-blocking send and receive primitives. Actra actors encapsulate the
functions and behavior of Harmony tasks. The ESM testbed uses Actra and Objective-C. I
Actra is a version of Smalltalk extended to support the Actor concurrent object-oriented
model. Actra is used for simulating, prototyping, monitoring, debugging, testing system
software, and software development tools. Objective-C is used to code tasks with real- I
time performance constraints. To provide the programmer with a means to control the
granularity of the actors that make up the application program, the actors (concurrent I
objects) in Actra may consist of lower-level objects. These lower-level objects can
communicate directly with each other, but communication to the outside world is done
through their actor.

Simulations represent a large class of applications that stand to gain significantly from the
performance improvements promised by parallel processing. Jade Simulations
International Corporation (Calgary, Canada) has a product called Sim+-- [Cleary:89]
based on the Time Warp distributed discrete-event simulation model developed by
Jefferson [Jefferson:87]. Sim++ is written in C++. It uses a special library to support
simulation constructs. Sim++ is currently available for Meiko and BBN multicomputer
systems. It can also be used on a network with Sun 3, Sun 4, and HP 9000 workstations. I
Sim++ has been used for a number of applied simulations. The Alberta Government
Telephone Company is using Sim++ for network planning. Bell Northern Research,
Ottawa, uses it for electronic CAD. The Naval Research Lab uses it for a real-time
communication simulation investigating the impact of such things as varying the
communication media and protocols for ship-to-ship and ship-to-shore communication.

Sununary. Object-oriented programming is becoming an increasingly popular model of 3
programming in the commercial software development community because of the
modularity and code reusability it provides for software development. A number of
researchers in the field of parallel system development seem to believe that object-i
oriented programming holds promise as a model of programming for parallel
computation. If object-orientd programming comes to dominate the commercial
software world, as some predict, then object-oriented programming for parallel systems I
will probably follow.

I
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SECTION 4

3 PERFORMANCE CONSIDERATIONS

14.1 Introduction

The single most important criterion for comparing machines with respect to performance
must be the class or classes of applications that are going to be run on the machine.
Different applications can have different performance characteristics on different5 machines, or allow different implementations on the same machine. A careful analysis of
the characteristics of the particular application class is, therefore, crucial to improved
processing performance.

In this vein there are several questions to be considered. First, are the performance
requirements of the system real-time, interactive, or batch? Secondly, is it possible to
meet these requirements with the allotted processing budget? In this regard there are two
factors to consider: how well does the machine perform, and how much programmer

SI effort and expertise does it take to get the machine to perform at that level?

When purchasing a system, how money is apportioned to the various components of the
system should also be considered. Is the application compute, communication, or
input/output bound? If the application is compute-bound, look to maximize computing
power. This may be done most effectively by maximizing the number of processors.
Alternatively, it may be more worthwhile to settle for fewer processors and spend the
extra money for higher-performance vector processois. If the application is
communication-bound, look for fast processor-to-processor communications. For such
applications, this may be the single most important performance characteristic. If the
application is I/O bound, look for high-bandwidth I/O, multiple I/O channels, and3multiple high-capacity secondary storage subsystems.

1 4.2 Performance Criteria

Peak Speed. Peak speed is used to measure a machine's performance when all of itshardware is working at its maximum theoretical rate. For example, with vector
processors, assume that pipes are kept continually full. For multiprocessors, assume that

I all processors are kept continually busy. In reality, there are no computers currently in
existence that perform at their peak speed on a sustained basis. In fact, average
performance for most problems is only about 25 percent of peak [Hwang:87]. Some
problems such as large matrix computations can achieve more, but most programs are not
sufficiently regular in structure to achieve this. Given this caveat, the reader may find the5 following chart (figure 4-1) that depicts peak performance in megaflops versus time of
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interest. The numbers in parenthesis indicate the number of processors that would be I
used to obtain the peak performance indicated. (The data shown in this graph was
obtained from [Hwang:85], [SSS: 89], and vendor supplied information.) MITRE has a
number of these parallel computers available in-house including Alliant, Ametek, Encore,
iPSC, iWarp, and Sequent systems.
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Figure 4-1. High-Performance Computing

Number of Processors. For multiprocessor systems, the number of processors is a base I
measure of how great a performance improvement may be obtained for appropriate
applications. For certain programs, N processors may indeed yield close to a factor of N
performance improvement. For communication or input/output-intensive applications,
however, it may not be possible to keep those processors busy enough to obtain even 10
percent of the promised factor of N improvement The number of processors, in any case, 3
cannot be increased without bound; there exists a point where processor
intercommunication will limit the performance benefits of more processors.
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Communication Bandwidth. If processes running on different processors must
Scommunicate frequently to accomplish their work, the speed with which they can

communicate and the amount of data that can be transmitted per unit time becomes a key
issue. In distributed-memory systems, such as the Intel iPSC/860, the processors
communicate information through message passing. If communication channels are
slow, performance may be degraded when one processor must wait for data to arrive from5 another processor before it can continue its computation.

On shared-memory computers, communication bandwidth is generally determined by the5 bandwidth to the shared memory. The effective bandwidth for these systems is generally
much higher than for distributed-memory systems even when the underlying hardware
architecture is similar. This higher bandwidth is essential because distributed-memory
systems pass general-purpose messages requiring high software overhead to process. In
most cases, expensive memory allocation techniques are also employed. Shared-memory
architectures, on the other hand, manipulate highly structured data, and the hardware is
tailored to accommodate this, thereby eliminating or minimizing software overhead.

The topology of a multiprocessor system may affect its performance to a greater or lesser
extent. If it does not take much longer to send a message between two processors that are
not directly connected, compared to the time it takes to send a message between two5 processors that are directly connected, then the topology may have little effect on overall
performance.

I Load Balancing. Load balancing concerns the distribution of work among available
processors. In shared-memory machines the simple expedient of allocating the next
ready task to a processor that becomes idle is viable because all tasks are more or less
equally available in the shared memory. If a more efficient scheme is needed, or if (as in
a distributed-memory system) all tasks are not equally available, the programmer is3 usually responsible for deciding how an algorithm is partitioned among the machine's
available processors. This has the dual disadvantage of being tedious for the programmer
and static in nature. Although it may be possible for some programs to be partitioned
such that work is distributed reasonably evenly among all processors, static partitioning is
limited in what it can do. In general, the amount of work being done by the different
processes that comprise the program changes with time. This means that one particular
distribution of processes among processors may distribute the workload among those
processors rather evenly at one time and quite unevenly at a later time. It would be
preferable to have the system recognize when the workload becomes too unbalanced, and
redistribute processes to even out that workload, and to have this happen dynamically, as
the program is running. The Myrias SPS-3's operating system dynamically and3 automatically balances workload during execution to keep processors busy by assigning
and reassigning tasks to available processors.
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Memory and Storage Considerations. The goal of a memory system is to deliver I
instructions and data to processors at a rate necessary to sustain unhampered
performance. If a computer is capable of performing one billion operations per second,
the memory system must be able to supply its processing elements with one billion
instructions and perhaps two billion data items per second. The perfect memory system
is, therefore, an infinitely large storage area with instantaneous response (unfortunately, 3
there are no companies currently delivering such a system). Systems that are on the
market today try to mimic the perfect system with a hierarchy of storage devices, each
with different characteristics. I
In most systems, data and instructions are on disks for long-term storage. Since even the
fastest disks keep most supercomputers and parallel computers waiting for data, a
software mechanism called disk striping is used to increase the transfer rate to and from
disk storage. Disk striping stores data on multiple disks and reads and writes data in
parallel. With disk striping, data is divided into blocks and distributed across multiple
disks-the first block on the first disk, the second block on the second disk, etc.- so that
multiple reads and writes can be performed in parallel. If an application program I
requests more than one numerically contiguous block at a time, it benefits from an
increased transfer rate as disk drives transfer data into the system in parallel. 3
Disk access is usually controlled by specialized I/O processors separate from those
processors used to perform the actual computations. This frees the computational 3
processors from having to handle their own I/O requests and allows the I/O processors to
be optimized for I/O operations.

Data read from disk is usually written into a semiconductor memory system. The path
from I/O subsystem to memory is usually called the main system bus (although, on some
multiprocessors, there is no main bus). The rate at which data can be moved over this bus I
should be sufficient to handle the I/O subsystem's ability to transfer data to and from
memory, or else it represents a bottleneck and renders at least part of the I/O subsystem's
capability useless. In practice, it may be more difficult to determine whether the bus's
transfer rate is sufficient, since the same bus may also carry traffic between processors
and memory and other devices. One simple method is to sum the peak rates of the 3
various subsystems and see if the bus can sustain that total transfer rate. This is more
complicated than it sounds, however, since there are several mechanisms that can be used
to reduce a processor's load on main memory.

One mechanism to reduce the time it takes a processor to access memory and to reduce
the contention among memory accesses by different processors is a local memory cache.
The idea behind memory caching came from the observation that most programs often
reuse instruction sequences (for example, in loops) and/or data. If a processor can
successfully retrieve the information it needs from a small localized memory (cache), the
number of main memory accesses it has to make is reduced. This has two benefits: it
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I reduces contention for both the memory bus and memory, and it allows slower, less
costly parts to be used in main memory. Even with a cache, main memory still needs to

Stransfer data at a very high bandwidth to the processor/cache subsystem. To obtain this
bandwidth, memory access can be interleaved in the same way as disk files can be
striped. By constructing main memory from a number of memory banks, multiple
memory accesses can be performed in parallel.

Most caches work on the principle that a programmer does not understand the patterns of
I execution of a program well enough to specify what should be held in a cache; the

hardware simply holds what was used most recently. High-speed caches connected to
each processor maintain local copies of memory locations and supply operands and
instructions at the rate required by each processor. However, the existence of multiple
copies of data gives rise to a cache-coherency problem where multiple copies of the same3memory location must be kept consistent even while in the different processors' cache
[Dubois:90]. Solving the cache coherency problem is an active question being pursued

-- by industry and academia alike.

A system's memory access time is dependent on all the factors above. Once a pro-
cessor's speed is known, the required speeds for the rest of the system can be calculated.
The size of the cache needed to ensure that a sufficient number (more than 90 percent) of
memory accesses are cache accesses can also be calculated. The amount of cache, main
memory, and disk memory required is application dependent.

Scalability. By scalability, we mean the ability to realize more computing power by
adding more processors, memory, or both to a system. A system that could be scaled
perfectly would provide double the performance if twice as many processors were
furnished. In reality, systems cannot be scaled up arbitrarily. For example, shared-
memory machines ultimately run out of bus bandwidth as processors are added.
Currently, the machines that offer the greatest scalability are distributed-memory3 message-passing systems.

In addition to asking how far a particular architecture can be scaled, it may be important
to ask how incrementally it can be scaled. For example, in order to increase the size of a
hypercube network with 2N processors, it is necessary to add 2N processors, taking the
system from an N-dimensional cube to an (N+1)-dimensional cube. The need (and theIcost) to scale up a system by doubling its size is a constraint of which potential users
should be aware. In addition, if the original nodes do not contain enough
communications channels for the upgrade, then the nodes will have to be replaced as
well.

3 Software Environment. When reviewing hardware performance specifications for
different machines, it is sometimes easy to get lost in the quest for the hottest hardware3 and to forget that the best hardware is useless without good software-development tools.
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The first consideration is language support. All supercomputers mentioned in this report I
support variations of FORTRAN. Most also support C and many support even LISP. As
discussed in section 3, Ada is also becoming more and more available on parallel
computers. However, whether a favorite language is available on a particular machine
should not be the only consideration in its selection.

The availability of a particular language maybe as important as (if not more important
than) the quality of the program development environment that is offered for a machine.
An important question is whether a concurrent debugger is available for the language of
choice. The additional complexity of expressing concurrency has made debugging
parallel programs much harder than debugging sequential programs. When multiple
processors are executing in parallel, two situations arise that do not arise in uniprocessor
machines. The first situation is that in the presence of an error, repeated executions of the
same program using the same input data can produce different results. Two processors 3
may read and write the same memory location in a different order in different runs,
thereby producing different results. Secondly, in distributed systems, there may not be a

global state and it is, therefore, difficult to determine the exact order of events I
[McDowell:89].

A debugger assists in locating, analyzing, and correcting suspected errors. Naturally, i
commercial multiprocessor vendors first provided debuggers that were modifications of
their uniprocessor counterparts. These traditional debuggers primarily mimic source-
level debuggers, in that the user can step through the program execution one line at a
time. Each parallel process can then be examined through its own debugger. There are
two main disadvantages to these debuggers. First, with many processors the traditional 3
debugging approach quickly becomes unwieldy; therefore, there is a need to coordinate
the debugging results using global commands. Secondly, the debugger is typically
intrusive; that is, the debugger may alter the results of the execution, because its use can I
impact the timing of the interactions of processors and memory.

Researchers are currently investigating several different approaches to improving I
concurrent debugging. Most of these investigations include the use of windows,
graphics, and visualization techniques to provide a higher-level view of program 3
execution [McDowell:89]. Although most of the more advanced, sophisticated,
concurrent debuggers are prototypes, there are a few that are commercially available. For
example, Intel provides a debugger with the iPSC/860 that allows the user to specify I
commands on a group of processors. In addition, Encore (under DARPA funding) has
developed a non-intrusive parallel debugger called Parasight [Aral:88]. Parasight
provides high-level debugging and monitoring capabilities along with low-level profiling
tools. Finally, MITRE researchers are combining execution replay with automated
analysis to debug parallel programs [Lafferty:90, Hunter:90]. 3
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I The problem of debugging in a multiprocessor environment is far more than simply a
problem of user interface design. Tools for debugging multiprocessor systems are still3 being developed. This, coupled with the difficulty of writing parallel programs in the
first place, may continue to make parallel software development more expensive than
sequential software development for some time to come.

In addition, although some vendors provide performance monitoring tools (that is, tools
that show how well the application is utilizing the resources of the machine), these tools
have widely differing capabilities and are not available on all machines. Finally,
developing large software systems for parallel computers is a very complex task. The
entire software lifecycle, which includes requirements definition, prototyping,
preliminary and detailed design, coding, testing, validation and verification, and
maintenance, has to be reviewed, modified, and tailored to address the additional3 complexity of concurrent computing.

3 4.3 Comparing Machines

Peak versus Sustained Speed. Claims of peak machine speed by manufacturers are
generally true. They are not, however, good indicators of machine performance because
few applications can exercise a parallel machine continually at peak speed (MITRE's
quadratic-sieve integer-factoring algorithm is an example of one such application that
does). It is more typical to obtain perhaps only 25 percent of peak speed on a sustained
basis [Hwang:87].

Speedup/Efficiency. The measures of speedup and efficiency provide insight on
whether a parallel computer is being effectively utilized for a particular program.ISpeedup is the ratio of the execution time of the application on one processor to that of
the execution time on N processors. Efficiency, in turn, is defined to be the average3 utilization of the N processors allocated to execute the parallel program.

Attractive as parallel techniques are for attaining ever-increasing computing capability, it
is important to understand that all code cannot be run in parallel, and that even if 90
percent of an algorithm or program can be executed in parallel, the 10 percent that must
be executed sequentially may in actuality determine how fast the program as a whole can
be executed.

Typical applications contain steps, often referred to as the serial work, that must be
performed before and after the parallel computation takes place. For example, typical
steps which must be done sequentially are obtaining parameters, setting up the3 computation, creating displays, sending and receiving messages between processors, and
performing input/output procedures. Amdahl's Law is based on fixed-size speedup; that
is, the percentage of serial work does not change as the problem size increases.
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Researchers at Sandia National Laboratories, however, realized that, in practice, problem I
size scales with the number of processors; that is, the percentage of serial work changes
as the problem size varies. 3
Sandia's Law is a figure of merit based upon scaled speedup, which better represents
speedup for practical problems [Gustafson:88]. Both fixed-size (Amdahl's Law) and 3
scaled (Sandia's Law) speedup depend on different assumptions about the relation
between problem size and the number of processors [Denning:88]. Sandia's researchers
have been able to attain impressive speedups of over 1,020 on a 1,024 hypercube U
computer for practical applications. On the other hand, Amdahl's Law predicts a speedup
limit of no more than 250. Both laws have to be carefully applied and not blindly used to
predict performance.

At MITRE, we have evaluated the performance of a simplified program for calculating 3
target engagement opportunities for a set of weapon platforms against possible deployed
missiles. Different parallelization approaches were used to evaluate the performance of
the Encore Multimax 320 [Michaud:90b] and the Alliant FX/80 [Michaud:90a].

Benchmarks. While there are many different measures used to compare machines, such
as price/performance, speedup, and efficiency [Karp:90], benchmarking is the most
effective approach to evaluating the performance of existing machines. Benchmarking is
the measurement of specifically defined parameters (for example, execution time,
memory use) and their subsequent comparison to known measurements of the same
parameters on existing systems. In particular, a hierarchical benchmarking approach is
currently the most accepted procedure [Dongarra:87, McCullough:88]. The hierarchical
benchmarking approach, although time-consuming, ensures that no essential information
is eliminated (e.g., the CPU is fast, but the input/output speeds are intolerably slow). Six
levels of programs are benchmarked: basic input/output operations, program kernels, I
basic routines, stripped-down versions of major applications, full applications, and
developmental programs. Be wary of stated manufacturer's claims that program X ran at
Y MIPS on their machine, since they often optimize code so that it performs well on their
particular machine. They may also compile it on their latest experimental compiler, run it
on a specially built machine with slightly faster hardware, and so on. Keep in mind that 3
there is no single machine that out performs all others for all programs. In many cases,
the architecture of one machine is a more natural one for a given set of algorithms,
because it may better reflect the internal structure of those algorithms. 3
Manufacturers may also provide the benchmark results for program kernel and basic

routines as an indication of their computer's performance. As mentioned above, it must

be remembered that the program kernel and basic routines provide only partial
information in the benchmarking hierarchy. Nonetheless, the most popular set of
program kernels are the Livermore FORTRAN kernels which are representative of the
computationally intensive portions of actual programs used at Lawrence Livermore
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1 National Laboratory. This set of program kernels tends to concentrate on simple loops,
however, and does not always accurately represent system performance. The most
popular basic routines are the LINPACK routines, which are routines that solve a linear
system of equations [Dongarra:90]. Finally, The Perfect Benchmarks initiated in 1987 by
D. J. Kuck and A. H. Sameh of the University of Illinois are thirteen FORTRAN
application programs in various engineering and science fields [Cybenko:90]. The
Perfect Benchmark's methodology is applied to all the executions of the application
programs on various computers ranging from supercomputers to workstations
[Pointer:90].

5 In summary, it is imperative to remember that there is no universal number that will
characterize system performance. The actual performance of a computer is dependent on
many factors including architecture, application, language, programmer skill, and
workload of the system. However, benchmarks, if properly integrated, can provide
insight into the performance of a computer for a specific application.I
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I SECTION 5

3 SUMMARY AND PERSPECTIVES

3This document provides an overview of parallel computing issues and terminology. It
describes the more popular, readily available parallel and supercomputer architectures
and discusses different language approaches to parallel computation. The actual details
of the machines and languages will change with time, but the fundamental issues and
basic concerns remain tht same. Indeed, efforts to survey the industry quickly reveal that3 new companies are constantly being formed while others disappear. Nonetheless, the
industry as a whole manifests strength, vitality, and excitement, even though parallel
computing is still very much in its infancy.

While tremendous computational power is already available through modem super-
computers and parallel computer architectures, the technologies being applied to the area
of parallel processing are constantly improving. Device speeds are becoming faster, the
number of gates per chip is increasing, the power needed per gate is dropping, and the
number of pins per chip is increasing. In fact, many experts use the "2 by 2" rule that
states that "everything doubles in two years." If this rule continues to apply, we will see
great advances in hardware design in the near future. These advances will give rise to3 both new machine architectures using innovative approaches and more traditional
architectures with faster components. Software languages and paradigms are also rapidly
evolving. Old and familiar languages are being recast for the parallel computing
environment and new paradigms are being created.

One of the greatest concerns of politicians, computer scientists, scientists, and engineers
alike, however, is that theoretical breakthroughs in compiler technology, languages, and
implementations of practical software environments have not kept pace with the3 hardware. As Senator Gore remarked at a symposium on supercomputers "... the benefits
of supercomputing do not come from the creation of the machines; they come from the
use of the machines. And we are not using the machines" [NAS:89]. This problem does
not arise from a shortage of computationally intensive problems or for lack of access to
supercomputers, because the United States has four National Supercomputer Centers
which are constantly upgrading and expanding their computing resources. Instead, the

underutilization of supercomputer resources seems to occur for two primary reasons.
First, the potential application users do not understand how supercomputers and parallel
processing can be used to more effectively solve their problems. Secondly, researchers

who are using high-performance computers are frequently failing to take full advantage
of the machine. For example, some researchers who have access to a four-processor Cray
still use the Cray as a uniprocessor machine.
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The first part of the underutilization problem can be solved by better education and I
communication between researchers. If one scientist or engineer sees or hears of
colleagues making great strides using a high-performance computer, that individual may 3
be more willing to extend his research to include the use of supercomputers or parallel
machines. The second part of the problem will be solved by better compilers with
enhanced capabilities for more automatic vectorization and concurrentization, by
languages that are portable between machines, by improved software development tools
so that the application user does not have to be a computer scientist, and by visualization.

Visualization is an important new research area that allows huge quantities of result data
to be displayed visually. Since supercomputers and parallel machines normally generate
large amounts of data, visualization and animation provide three-dimensional color
images of a scientific process or object that more clearly depict essential relationships in
complex n-dimensional models. 3
To facilitate greater access to modem supercomputers and parallel machines, the National
Science Foundation (NSF) has developed a national computer network, NSFNET. This
backbone network "... is used to access resources such as supercomputers, libraries, and
satellite data, as well as to link geographically dispersed researchers, educators, and
scholars" [Forefronts:90]. Regional networks connect major university networks to the
backbone NSFNET. After its current expansion is completed, NSFNET will be the
"world's fastest openly available network for research and education ..." [Forefronts:90]. 3
In addition, NSF and DARPA are providing funds for five gigabit test beds to explore the
prospects for gigabit networks in order to support, for example, transferring of visual
images [Turner:90].

In the future, we can expect to see massively parallel teraflop machines. These machines
will be supported by gigabit networks which will allow grand-challenge problems to be
solved by using several supercomputers and parallel machines concurrently. In addition,
the user network interface will be transparent; that is, the user will not have to perform
incredible gyrations to access machines, transfer files, and see the results. The user will
not even have to be aware that different machines are being accessed. Finally, many of
the grand-challenge problems require very large databases that may be accessed 3
intuitively rather than by the more traditional relational access. Ideally, different users
will be able to access the same databases by the access method convenient for their
specific computational requirements.

lI
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i APPENDIX A

3 DESCRIPTIONS OF INDIVIDUAL MACHINES

This section contains brief descriptions of most of the machines mentioned in this
document, as well as other comparable machines. All these machines are commercially
marketed at this time and the information is the most currently available, having been
updated in the November-December 1991 time frame. Information on software and
available network services has also been included in these descriptions since this is
increasingly important to the consumer. However, information that was not applicable
and/or available has been omitted from these descriptions. Every attempt has been made

to confirm the information being published. All products are trademarks of their
respective companies. A summary of the major characteristics of the machines described
in this appendix are shown in table A-1.
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Alliant FX/2800 N
System Type
MIMD Information Confirmed

21 November 1991
Topology Alliant Computer Systems Corporation
Shared-memory, bus-based One Monarach Drive ILittleton, MA 0 1460

Processor Type Phone 508-486-1329
Intel i860 Fax 508-486-1329

Jay Maguire
Cycle Time/Clock Rate Senior Sales Representative
25 nsec (40 MHz) 5
Peak Speed
1.1 GFLOPS double precision (fully
configured with 28 processors) 3
Number of Processors
4-28 4
Processor Cache
Up to 8 caches of 2 MBYTES each
(16 MBYTES), shared by processors

Processor-to-Cache Bandwidth
1.28 GBYTES/sec

Memory
Up to 16 shared memory modules of
64 or 256 MBYTES each (4 GBYTES)

Memory Bus Bandwidth
640 MBYTES/sec

Software Environment
Onerating system: Concentrix (Berkeley
4.3 UNIX compatible with parallel
extensions)
Programming Languages:
FX/FORTRAN with 8X extensions,
FX/Ada, FX/C

Network Services
Ethernet, TCP/IP, DECnet, NFS, NCS,
NQS, UltraNet, FDDI, HIPPI

A
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Active Memory Technology DAP 610C I
System Type
SIMD Applications Packages

Image processing library, digital signal
Topology processing library, interactive debugging
Distributed memory, four-way nearest system, graphics library, general purpose I
neighbor connectivity and row and math library, PDT parallel data
column data paths transforms library

Processor Type Information ConfirmedI
1 bit processor with 8 bit coprocessor 18 November 1991

Active Memory Technology, Inc.
Cycle Time (Clock Rate) (AMT)|
100 nsec (10 MHz) 525 Bridgeport Avenue, Suite 105

Shelton, CT 06484
Peak Speed Phone 203-925-1075
40 Billion 1 bit logical operations per sec 16802 Aston Street, Suite 103 I
20 Billion 8-bit integer adds per sec Irvine, CA 92714
560 MFLOPS 32 bit additions Thomas J. Massage
408 MFLOPS 32 bit multiplications North East Regional Sales ManagerI

Number of Processors
4,096 (4K) I
Memory
4-128 KBYTES/processor
(16-512 MBYTES total)

Memory-to-Processor Bandwidth
5.1 GBYTES/sec 1 bit processor
40 GBYTES/sec 8 bit coprocessor

Processor-to-Processor Bandwidth
5.1 GBYTES/sec (nearest neighbor)
5.1 GBYTES/sec (row/column broadcast)
If information is to be sent to a subset of
the processors, a global mask must be I
broadcast before the information is
broadcast.

I/O Bandwidth U
100 MBYTES/sec (consumes less than 3%
of memory bandwidth) 3
Software Environment
Host.sstems: Sun Systems and VAX
Q ating systems: UNIX, VAX/VMS
Pogammin Languaes: FORTRAN*,
APAL assembler

I
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BBN TC2000 Multiprocessor i
System Type
MIMD Information Confirmed

21 November 1991
Topology BBN Advanced Computers, Inc.
Globally addressable distributed memory, 10 Fawcett Street I
butterfly switch Cambridge, MA 02138

Phone 617-873-3457/3786
Processor Type Fax 617-873-3315 i
Motorola 88100 RISC processor with Tom Blackadar
floating point pipelines Director, Operations

Cycle Time (Clock Rate) 1
50 nsec (20 MHz)

Peak Speed
13 Whetstone MIPS/processor,
20 MFLOPS/processor,
34000 Dhrystones/processor

Number of Processors
8 - 128 (designed to support 512)

Processor Cache
32 KBYTES/processor instruction cache,
64 KBYTE/processor data cache 3
Memory
4 - 16 MBYTES/processor

Memory-to-Processor Bandwidth
Local access 80 MBYTES/sec,
Remote access 38 MBYTES/sec per path 3
Software Environment
Oeating systems: nX (Berkeley UNIX
4.3 compatible). Also supports pSOS+m
Real-Time executive and the X Window
system. FPromming Languages: FORTRAN,

C, and Ada with BBN parallel
extensions, C++
Development Tools: Xtra Tool Set
includes the TotalView parallel
debugger and the GIST performance
analysis tool I
Network Services
Ethernet, TCP/IP, NFS, DDN

I
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* TCIFPV Motorola 88100
* RISC CPU

Mokirola 88200 Motorola 88200 Main Memory
* Configuration MMU and MMU and (4 - 16 MB)
* and Control 16 KB Cache 16 KB Cache

Registers (instruction) (Data)

BteySwitch

Figure A-3b. BBIN TC2000 TCIFPV Function Card
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Cogent Research XTM Series I
System Type

Topology
Processors connected by 32-bit parallel
bus and four 32 by 32 crossbar switches.
The four crossbar switch allow as many
as four processors to be connected to the
same processor at the same time.

Processor Type
Inmos T800

Cycle Time (Clock Rate)
33 nsec (30 MHz)

Peak Speed
132 MFLOPS, 940 MIPS 5
Number of Processors

2- 32

Memory a
488 MBY'rFs

Processor-to-Processor Bandwidth I
32-bit parallel bus (LindaBus)
40 MBYTES/sec;
transputer links 20 MBITS/sec

Software Environment
Qpaing system: QIX, a parallel
operating system with Kernel Linda;
compatible with UNIX
Programin Lan &aae: FORTRAN,
C, C++, Linda parallel extensions, Lisp $
Developent Tools: PIX PostScript and
NeWS compatible window system,
X Windows, program monitoring and
debugging tools

Network Services
Ethernet, TCP/IP

Information Confirmed
19 November 1991
Cogent Research Incorporated
1100 NW Compton Drive
Beaverton, Oregon 97006-6998
Phone 503-690-1450
Fax 503-690-1344
Jeffrey Lang I
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CONVEX C38 Series U
System Type I
MIMD Applications Packages 3

Over 1100 third party libraries railable
Topology and are listed in the CONVEX ATLAS
Shared-memory, crossbar switch catalogue.

Processor Type Network Services
ECL/CMOS 64-bit integrated Supports industry-standard protocols,
scalar/vector/symmetric parallel including NFS, NCS, TCP/P and
processor DECnet, HIPPI

Cycle Time (Clock Rate) Information Confirmed j
16 nsec (62 MHz) 25 November 1991

Corporate Headquarters:
Peak Speed CONVEX Computer Corporation
125 MFLOPS/processor 64-bit, 3000 Waterview Parkway
250 MFLOPS/processor 32-bit P.O. Box 833851

Richardson, TX 75083-3851
Number of Processors Local contact: I
1-8 CONVEX Computer Corporation

6650 Collamer Road
Processor Cache E. Syracuse, NY 13057
4 KBYTE scalar instruction cache (cache Phone 315-463-7189
is bypassed for vector operations) Fax 315-437-8283

Anthony DiMento
Memory Account Executive
256-4,096 BYTES

Memory-to-Processor Bandwidth 3
480 MBYTES/sec/processor

Software Environment
Qeraing systems: CONVEX UNIX,
an extended version of UNIX 4.3 BSD;
virtual memory and demand paging
supported. Also available is COVUE, a
software package that emulates the
VAX/VMS environment, POSIX
compliant. I
Proammin T Lan7uaRes: ANSI
standard FORTRAN 7, FORTRAN 77
with FORTRAN 90 array notations, C,
Ada, and C++. Compilers automatically
parallelize, vectorize, and globally
optimize the code.
Develoment Tools: multitasking I
compilers, CXpa, performance analyzer,
CXdb X-Window-based debugger,
application compiler with
interprocedural analyzer/optimizer, and
AVS an application visualization system.

I1
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Cray Y-MP C90 U
System TypeI
MIMD Information Confirmed

22 November 1991
Topology Cray Research, Inc.
Shared-memory, bus-based 1900 West Park Drive I

Suite 420
Processor Type Westborough, MA 01581
Dual pipelined vector processor Phone 508-898-2531

Fax 508-366-4359
Cycle Time (Clock Rate) 1-800-284-2729
4 nsec (250 MHz) Mardi Schmieder

Corporate Communications I
Peak Speed
I GFLOPS/processor

Number of Processors1- 16

Memory I
256 MEGAWORDS (1 word = 8 bytes)

Memory-to-Processor Bandwidth I
250 GBYTES/sec

Software Environment
Qraingz system: UNICOS, based on
AT&T UNIX System V operating
system (full POSIX compliant), COSpramming Lanuaes:

FORTRAN 77 and ANSI C with
automatic vectorizing and multi-tasking,
FORTRAN D, C++, Pascal, Cray Ada, I
Common Lisp, and SIMSCRIPT
(1993 FORTRAN 90)
Develooment Tools: X Windows,
debugging aids and performance
analysis tools for CP L and I/O, Cray
visualization toolkit, Motif, DGL
(Distributed Graphics Language), X l
View, AVS, Explorer, Khoros (image
and signal processing library), Gipsy
(interactive image processing system),
VAST (FORTRAN compiler aid),
FORGE (FORTRAN 77 to FORTRAN
90 translator).

Network Services
TCP/IP, NFS, and Cray Research Station
Software protocols for proprietary I
systems, HIPPI, FDDI, Ethernet, POSIX,
VME, Hyperchannel, RAID (external
disk array), ESDI 3
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Encore Multimax 520 1
System Type
MIMD .
Topology
Shared-memory, bus-based

Processor Type
National Semiconductor NS32532
microprocessor

Cyde Time (Clock Rate)
33 nsec (30 MHz) I
Peak Speed
170 MIPS (8.5 MIPS/processor) 3
Number of Processors
2-20 5
Memory
32 - 640 MBYTES

Memory-to-Processor Bandwidth i
100 MBYTES/sec

Software Environment I
O 'ating systems: UMAX 4.3 (UNIX
4.3 compatible), UMAX V (UNIX
System V compatible) and MACH. I
Prowgamming Lanuage: Encore
Parallel FORTRAN, Ada, C, Pascal,
Lisp, BASIC, and COBOL. 3
Network Services
TCP/IP, NFS, X.25, and other standards i
Information Confirmed
15 August 1990
Encore Computer Corporation iEastern Operations
257 Cedar Hill Street
Marlborough, MA 01752-3089
Phone 508-485-0709 I
Fax 508-485-0709
Richard A. DiMarzo
Regional Manager 3

I
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IBM ES/9000 Model 900 1
System Type
MJMD Software Environment

Opeadng systems: MVS/ESA
Topology (Extended System Architecture),
Processors directly linked via fiber optic VM/ESA, AIX/ESA (UNIX-based), 1
channels to dual control elements which VSE, DPPX (Distributed Processing
contain 2 MBYTE high-speed buffers. Programming Executive). Virtual
Shared memory system is partitionable, memory, Operating systems compatible
either physically, logically, or in with earlier architectures
software ProEamming Languages: VS

FORTRAN (supports explicit fork and
Processor Type join) and APL2 both with automatic I
Proprietary processor with Vector vectorization, C, Pascal and Ada/370.
Facility (VF) provides eight 64-bit FORTRAN-90 will be supported
vector registers or sixteen 32-bit vector eventually.
registers, with 256 data elements in each Develoment Tools: Optimization
register Subroutine Library (OSL), Data Facility

Storage Management Subsystem
Cycle Time (Clock Rate) (DFSMS), Dynamic Reconfiguration I
9 nsec (110 MHz) Management (DRM). Supports the

Engineering and Scientific Subroutine
Peak Speed Library (ESSL), X Windows, 700 third I
444 MFLOPS/processor party applications

Number of Processors Network Services
Up to 6 processors with up to 6 VFs IBM NetView supports SNA, TCP/IP,

OSI, DECnet, Ethernet, Ultranet (which
Processor Cache supports VME), FDDI, HIPPI.
128 KBYTES data buffer and 128 KBYTES Through HIPPI fiber (rather than copper) U
instruction buffer/processor allows I/O channels, one in one out (rather than
concurrent instruction and data fetches copper), provides 17 MBYTES/sec.

Memory Additional Options 1
1024 MBYTES central storage, Sysplex Timer
8192 MBYTES expanded storage
16 TERABYTE virtual address space. Information Confirmed i
Expanded storage can be used for 11 June 1992
paging. 4 K page can be moved between International Business Machines
expanded storage and central storage in Gene Hozafel, Scientific Marketing I
less than 25 microseconds. Group

301-564-2095
Memory-to-Processor Bandwidth
Extended store to CPU and central store
to CPU transfer rates are not published

I
I
I
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Vector Vector Vector Vector
VF/ICF Facility Facility Facility Facility VF/ICF

Central Central Central Central Central Central
Processor Processor Processor Processor Processor Processor

0 1 2 3 4 5
Level One Level One Level One Level One Level One Level One

High Speed High Speed High Speed High Speed High Speed High Speed
Buffer Buffer Buffer Buffer Buffer Buffer

IL
Central Level Two Level Two Central
Storage High Speed Buffer High Speed Buffer Storage

System Control Element System Control Element

i1 1 , i-T

I I

II

Channel Subsystem [ Channel Subsystem

I I1.. IIII I ... III

VF/ICF = Vector Facility or Integrated Cryptographic Feature

3Figure A-8. IBM ES/9000 Model 900
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Intel iPSC/860 I
System Typem
MIMD Information Confirmed

13 December 1991
Topology INTEL Scientific Computers
Distributed-memory, hypercube 15201 N. W. Greenbrier Parkway I

Beaverton, Oregon 97006
Processor Type Phone 503-629-7600
i860 RISC microprocessor Steve Cannon

Product Manager
Cycle Time (Clock Rate)
25 nsec (40 MHz)

Peak Speed
33 MIPS, 80 single/60 double precision
MFLOPS/processor 3
Number of Processors
8- 128

Memory
64 - 2048 MBYTES

Processor-to-Processor Bandwidth I
2.8 MBYTES/sec

1/0 Facilities 5
Concurrent File System (CFS), a
UNIX-like system with automatic disk- I
striping

Software Environment
Host system: Intel 386 platform, or U
SUN remote hosts
QOreatin systems: UNIX System V
release 3.2 on host and NXJ2 kernel
operating system on processors
ProgLminguage: FORTRAN,
C
Development Tools: IPD parallel
debugger; FORGE, for parallefizing
large FORTRAN programs; PAT, a
Performance Analysis Tool; ProSolvers,
a Parallel Matrix Solutions Library;
DGL, Distributed Graphics Library,

X Windows

Network Services
TCP/IP, FrP, Ethernet, NFS, NQS

A
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Intel Paragon XP/S I
Paragon available fourth quarter of 1992
based on Touchstone Sigma Machine Software Environment
System Type Qperating systems: OSF UNIX with
MIMD Mach Kernel

Programming Lang==: FORTRAN,
Topology C, Ada, C++, Data-parallel FORTRAN,
2D mesh of node boards, each node FORTRAN-90 (late 1992)
board has 1 application processor Devopment Tools: , X Windows, IPD
(Late 1993: 4 processors sharing parallel debugger; FORGE and CAST
64-MBYTES of memory) parallelization tools; iPVS Hardware-

aided Intel Performance Visualization
Processor Type System, Intel ProSolver parallel equation I
i860-XP solver, math libraries, Motif, DGL

(Distributed Graphics Language allows
Cycle Time (Clock Rate) rendering on workstation-data is sent to
20 nsec (50 MHz) workstation as graphics commands

rather than pixels)
Processor Cache Working with DEC on High
16 KBYTES internal cache Performance FORTRAN automatic data- I

parallelism tool (Early 1993)
Peak Speed
42 MIPS/processor Network Services
75 MFLOPS/processor double precision TCP/IP, FTP, Ethernet, NFS, HIPPI,

Unitree file manager
Number of Processors
66 to 1024 nodes Information Confirmed I
(Late 1993 4 processors/node) 26 May 1992

INTEL Scientific Computers
Memory 15201 N. W. Greenbrier Parkway U
16-32 MBYTES/node Beaverton, Oregon 97006
Late 1993 Phone 503-629-7600
16-64 MBYTES memory shared among Steve Cannon
4 processors Product Manager
256 KBYTES cache/processor
Early 1994
16-128 MBYTES /node

Processor-to-Processor Bandwidth
200 MBYTE/SecI
25 microsec latency end-to-end

I
I
I
U
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Figure A-10. Intel Paragon System Architecture
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Kendell Square Research KSR-1 1
System Type
MIMD Software Environment

01ating systems: UNIX (OSF/l
Topology compatible) u
Distributed caches connected by a Progamming Language: COBAL,
hierarchical search engine. Data moves FORTRAN, C automatic and
to the point of reference. semiautomatic parallelization with

directives using Presto parallel run-time
Processor Type environment.
Proprietary RISC superscalar 64-bit; Develoment Tools: X Windows, Motif,
64-bit addressing (top 24 bits zero on NFS, dbx compatible parallel debugger,
KSR1) KSR parallel performance analysis tool I

Anlicagtin: ORACLE DBMS
Cycle Time (Clock Rate)
50 nsec (20 MHz) Network Services

TCP/IP, Ethernet, SNA, ISO/OSI, FDDI,
Peak Speed HIPPI, VME
40 MFLOPS/processor, n
40 MIPS/processor Information Confirmed

April 1992
Number of Processors Steve Frank
8-1088 Kendell Square Research i

170 Tracer Lane
Processor Cache Waltham, MA 02154-1379
256 KBYTEs/processor instruction cache, Phone 617-895-9400
256 KBYTES/processor data cache 6401 Golden Triangle Dr. Suite 450

Greenbelt, Maryland 20770
Memory 301-220-1396
512 KBYTES subcache/node
32 MBYTES cache/node
1 TBYTE/process of virtual memory

Memory-to-Processor Bandwidth I
Subcache: 160 MBYTES/sec
Local cache: 50 MBYTES/sec
Remote search group 0: u
1 GBYTES/sec
Remote search group 1:
1 GBYTES/sec per path I
4 GBYTES/sec aggregate

I/O Bandwidth
210 - 15,300 MBYTES/sec

I
I
U
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MasPar 1200 I

System Type
SIMD Network Services

Ethernet, TCP/IP, NFS, HIPPI (1993)Topology
Distributed memory, 2-dimensional Information Confirmed
array of processors terroidally wrapped 19 November 1991
at edges. X-Net, 8-way nearest neighbor MasPar Computer Corporation
communications and Global router 945 Concord Avenue
communications. Framingham, MA 01701 I

508-879-9242
Processor Type Fax 508-879-0698
Proprietary four bit serial processor George Themaras

North Eastern Manager I

Cycle Time (Clock Rate)
80 nsec (12 MHz)

Peak Speed
1.2 GFLOPS (0.075 MFLOPS/processor)
32-bit, U
550 MFLOPS (0.034 MFLOPS/processor)
64-bit,
26,000 MIPS (1.6 MIPS/processor)
or 0.2 32-bit MIPS/processor)

Number of Processors
1024- 16,384 (1K- 16K)

Processor Cache
192 BYTES on chip static RAM I
Memory
16 or 64 KBYTES DRAM per PE I
Memory-to-Processor Bandwidth
100 GBYTES/sec

Processor-to-Processor Bandwidth
18 GBYTES/sec (nearest neighbor)
1.3 GBYTES/sec (global) 5
Software Environment
Host system: VAXstation DS 5000/2000
Oarmfing system: UNIX I
lroframming Language: MasPar
FORTRAN, FORTRAN-90, MasPar
Parallel Application Language I
Develoment Tools: X Windows,
symbolic debugger, interactive profiler,
performance visualization tool, VAST-2
FORTRAN 77 to MasPar FORTRAN 1
translator, Mathematics and Image
Processing Libraries 3

A-24



PE Array

Figure A- 12a. MasPar PE Array

Array Control Unit
E

939 __________

13 rray =r

Standard /10

Ethernet

Figure A- 12b. MasPar Block Diagram

A-25



I

Meiko Computing Surface I
System Type

Topology
Distributed memory, reconfigureable
topology

Processor Type
Intel i860

Cycle Time (Clock Rate)
25 nsec (40 MHz) I
Peak Speed
80 MFLOPS/processor, 40 MIPS/processor 3
Number of Processors
2- 700 3
Memory
8-32 MBYTES/processor

Processor-to-Processor Bandwidth
6 MBYTES/sec

Software Environment I
Oaneg system: SUNOS 4.1.1,
CS-Tools
Host sym: Sun workstation
Progjamnjg Languages: C,
FORTRAN 77, Pascal, Occam,
Modula 2, C++ I

Network Services
Ethemet, TCP/IP, NFS 3
Information Confirmed
February 1992
Meiko Scientific Corporation
Reservoir Place
1601 Trapelo Road
Waltham, MA 02154
Phone 617-890-7676
Fax 617-890-5042
1555 Wilson Blvd. Suite 300
Arlington, VA 22209 I
Phone 703-875-8710
Marc Cotnoir

I
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Myrias SPS-3 U
System Type
MIMD Information Confirmed

December 1991
Topology Myrias Computer Technologies Inc.
Globally addressable distributed memory, 8522 Davies Road
bus hierarchy Edmondton, Alberta, Canada T6E 4Y5

(313) 625-4381
Processor Type Wayne T. Karpoff
Motorola MC68040 microprocessor

Cycle Time (Clock Rate)
40 nsec (25 MHz)

Peak Speed
8.3 MFLOPS/processor,
25 MIPS/processor

Number of Processors
16 - 4096 or more I
Prt-cssor Cache
16 KBYTES/processor instruction cache,
16 KBYTES/processor data cache

Memory
8-16 MBYTES/processor

Memory-to-Processor Bandwidth
Local access: 50 - 100 MBYTES/sec
Remote access:
33 MBYTES/sec per intercage link,
627 MBYTES/sec per cage 3
Software Environment
Host system: SPARC-based
Oting systems: UNIX-like (POSIX) I
with automatic load balancing
(demonstrated on 1044 processors-
system overhead increases
logarithmically with the number of
processors)
PrgoEamming Lanua : Myrias
Parallel FORTRAN, C (can do code I
block, subroutine, or loop-level
parallelization)
Development Tools* Myrias Parallel i
Debugger, Mprof, Xmtask and Xmperfperformance analysis tools, X Windows

Network Services t
Ethernet, NFS, TCP/IP, and standard
Sun network software 3
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NCUBE 2 I
System Type
System Information Confirmed

9 December 1991
Topology NCUBE
Distributed memory, hypercube 919 East Hillside Blvd.

Foster City, CA 94404
Processor Type 415-593-9000
Proprietary VLSI design 64-bit 800-35-NCUBE or 800-654-2823
processor Wendy Allen

Assistant Director, Corporate
Cycle Time (Clock Rate) Communications
50 nsec (20 MHz)

Peak Speed
7.5 MIPS I3.3 MFLOPS/processor

Number of Processors
8- 8192 I
Processor Cache
128 BYTES instruction cache

Memory
1 - 16 MBYTES/processor 3
Processor-to-Processor Bandwidth
2.2 MBYTES/sec per DMA channel,
100 microsec latency

Software Environment
Host ystems: Sun Workstation, VAX
mini-computer, Silicon Graphics
Qratig systems: Parallel AT&T
System 5.3 UNIX
Prorammin Lngua=.
FORTRAN 77, C, C++
Develozment Tools: Ndb (a parallel
debugger), profder

Applications Packages
Extensive math library, ORACLE
RDBMS, hundreds of third party
compute-intensive scientific and
business applications 5
Network Services
Ethernet, NFS, TCP/IP, HIPPI (1993)

A
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NEC SX-3 Model 44R i
System Type
MIMD

Topology
Shared-memory, bus-based 3
Processor Type
RISC processors with vector and scalar
pipelines (each processor contains
4 pipeline sets)

Cycle Time (Clock Rate) 3
2.5 nsec (400 MHz)

Peak Speed
25.6 GFLOPS, 789 MIPS

Number of Processors 3
4 I

Memory
128 MBYTES - 8 GBYTES

Memory-to-Processor Bandwidth
Transfer rates are not published 3
Software Environment
Ogerandng system: SUPER-UX (UNIX
System V compatible)
FORTRAN 77/SX and C with automatic
vectorization and parallelization
capabilities
DeveloRment Tools: CONVERTER/SX
converts FORTRAN programs from
other supercomputers to the SX-3 Series

Network Services
Hyperchannel, Ethernet, Telnet, TCP/IP, iNFS, NQS, UNIX STREAMS

Information Confirmed
20 December 1991
HNSX Supercomputers, Inc.
77 South Bedford Street
Burlington, MA 01803 I
Phone 617-270-7600
Samuel W. Adams
Vice President of Marketing Operations 3

3
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Figure A-16. NEC SX-3 R-Series System Configuration
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Sequent Symmetry 2000/750 1
System TypeI
MIMD Information Confirmed

21 November 1991
Topology Sequent Computer Systems, Inc.
Bus-based, shared-memory 15450 S. W. Koll Parkway U

Beaverton, OR 97006-6063
Processor Type Phone 1-800-854-0428
Intel 486 Ron Parsons

Manager, Technical Marketing
Cycle Time (Clock Rate)20 nsec (50 MHz)

Peak Speed
420 MIPS

Number of Processor I
2 - 30

Processor Cache I
512 KBYTES/processor

Memory I
8 - 832 MBYTES

Storage
Dual Channel Disk Controllers (DCCs)
support up to 56 disks (84 GBYTES of
storage) 3
Memory-to-Processor Bandwidth
80 MBYTES/sec

Software Environment I
Qmting system: DYNIX/PPX
(enhanced UNIX System 5.3) 3
programing Lanua=s
FORTRAN 77, C, Pascal, ANSI
COBOL
Development Tools: DYNIX Monitor,
Performance tools within database
environment

Applications Packages U
Third party software, Database
application environment, X Windows

Network Services
Ethernet, TCP/IP, NFS, X.25, IBM
SNA, Bisync, Novell, VME 3

I
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Thinking Machines CM.2 I
System Type
SIMD Information Unconfirmed

Thinking Machines Corporation

Topology 245 First Street
Distributed memory, nearest neighbor, Cambridge, MA 02142-1214
16 processors and local memory are Phone 617-876-1111
contained on one chip and arranged in a Tim Browne
12-dimensional hypercube. Director of Communications 3
Processor Type

Bit-serial

Cycle Time (Clock Rate)
125 nsec (8 MHz)

Peak Speed 3
4000 MIPS (8-bit byte add)
2500 MIPS (32-bit integer add)
31 GFLOPS

Number of Processors
65,536

Memory
2 GBYTES 3
Data Vault
Mass storage system holds 10-20
GBYTES and sustains 25 MBYTES/sec
transfer

Memory-to-Processor Bandwidth
3 GBrrS/sec

Processor-to-Processor Bandwidth
Information not published

Software Environment
Host systems: Sun-4 or VAX 6300 £
running UNIX or Symbolics 3600-series
Lisp Machine
Q atgin systems: Computer uses the
operating system of the host machine.
progammMing Lanua :
CM-FORTRAN, C*, *Lisp

Applications Packages
Include numerous fundamental physics
simulations, wind-tunnel simulation, ray-
tracing, hydrodynamic modeling,
seismic data processing, helicopter wake
simulation
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Figure A- 18 Thinking Machines Model CM-2

3 A-37



I

Thinking Machines CM-5 I
System Type
SPMD (Single Program Multiple Data) Software Environment
The same program is loaded on every Oeating systems: CMost (enhanced
node of a partition. A partition contains version of UNIX); virtual memory and
32 or more processing nodes and a multiple users are supported. Each node U
control processor (a Sun workstation). contains an operating system micro-
Each node executes the program kernel, each partition contains a full
asynchronously. operating system.

Prog'amming,anuages:
Topology CM-FORTRAN, FORTRAN 90, C*,
Distributed memory, fat-tree *Lisp
connectivity; data and synchronization Development Tools: Prism (Motif based I
control network software development environment:

debugger, performance monitor, data
Processor Type visualization), AVS (Automatic
22 MIPS SPARC RISC microprocessor Visualization System), Explorer,
each with four 64-bit vector units; vector CMX1 I (X Windows), CMSSL
units support floating point, integer, and (Scientific Software Library), CMMD
logical operations. (message-passing library for host/node I

programming), NQS (Network Queuing
Cycle Time (Clock Rate) System job batching system with
30 nsec (33 MHz) automatic check-pointing).

Peak Speed I/O
128 MFLOPS/processor, Scalable disk-array comes in 25 GBYTES
128 MIPS/processor units; each unit has 33 MBYTES/sec

aggregate transfer rate.
Number of Processors
32-16K Network Services I

Ethernet, NFS, FDDI, HIPPIVME,
Memory TCP/IP, Ultranet32 MBYTES/nodeI

Information Unconfirmed

Processor-to-Processor Bandwidth June 2, 1992
5 MBYTE/sec per pair of processors Thinking Machines Corporation
simultaneously for all pairs of nodes. 245 First Street
30-MBYT/sec between nearest Cambridge, MA 02142-1214
neighbors Phone 617-876-1111
2 - 4 microsecs latency for data network Jim Reardon I
1 - 2 microsecs latency for control Sales Manager
(synchronization) network

II
I
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APPENDIX B

I GLOSSARY OF TERMS AND ABBREVIATIONS

Provided below are the major terms and abbreviations that are found in this document

and that are used throughout literature on high-performance computers.

Annotations: Compiler directives.

ANSI: Computer language standards maintained by the American National Standard
Institute, Inc.

Barrier Synchronization: A method for synchronizing processors in which each
processor is delayed at a specific barrier point in a program until all processors have
reached that point.

Bottleneck: Usually a pileup of processes caused by a resource that cannot keep up.

BSD: Berkeley Standard for the UNIX operating system.

Byte: Eight bits of data.

Cache: A small-capacity, high-speed buffer memory used to provide an effective
reduction of main memory access times.

Cache Coherence: The requirement that each cache in a multiple processor system have
the same value for any shared memory location.

Cluster: A style of configuring multiple processors by connecting them to a common
external communications circuit.

Coarse-Grain Parallelism: Computation in which the unit of computation is large

compared to communication costs and other system overheads.

Concurrency: Parallelism.

Contention: Completion of processes for the use of a resource, usually causing
performance degradation.

Critical Section: A section of a program which is to be executed by only one process at
* a time.

Crossbar: An interconnection in which each input is connected to each output through a
single switch.

Cycle Time: CPU access time to primary storage.

DARPA: U. S. Department of Defense Advanced Research Projects Agency.

Data Flow: The sequence of operations that are performed on a collection of data during
a computation.
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Data Flow Computer : A computer in which the order of computation is determined by
the availability of the required data.

Deadlock: A condition in which two or more processes cannot proceed because each is
either directly or indirectly waiting for the other.

Dependency Analysis: An analysis showing which parts of a program depend on the I
prior completion of other parts.

Disk Striping: A software mechanism which divides data into blocks and distributes it m
across multiple disks, so that multiple reads and writes can be performed in parallel.

Distributed Memory: A memory architecture in which each processor has its own local
memory.

DRAM: Dynamic random access memory.

Efficiency: The average utilization of the processors allocated for a program.

Elaboration: Elaboration of the declaration (in an Ada program) is the process by which m
a declaration achieves its effect. This process happens during program execution.
After its elaboration, a declaration is said to be elaborated. The elaboration of a task
body has no other effect than to establish that the body can from then on be used for
the execution of tasks designated by objects of the corresponding task type. [DOD:83]

Fine-Grain Parallelism: Computation in which the unit of computation is small
compared to communication costs and other system overheads.

FORTRAN 8x: The new standard FORTRAN which includes new constructs for
processing arrays of data to allow for more efficient programming of vector and
parallel computers.

GBYTES (Gigabytes): 10243 bytes (sometimes referred to as one billion bytes). 3
GFLOPS (Gigaflops): One billion floating point operations per second.

Granularity: A measure of the size of a unit of computation. I
Hypercube: A parallel computer whose processors are connected as if they were comers

of a multidimensional cube and the connections were the edges. I
KBYTES (Kilobytes): 1024 bytes (sometimes referred to as one thousand bytes).

Kernel: The nucleus of an operating system. Resides in primary storage. 1
Latency: The delay between a request for data and when it is received. 3
LIW/VLIW (Long Instruction Word and Very Long Instruction Word): An

architecture in which fine-grain parallelism is attained by packing mat.y instructions
in a single word and processing them concurrently. m

I
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I Massively Parallel: Large number (greater than 1000) of processors, usually slower than
other types of processors.

1 MBYTES (Megabytes): 10242 bytes (sometimes referred to as one million bytes).

MFLOPS (Megaflops): An execution rate measured in units of a million floating point
operations per second.

MHz (Megahertz): One million cycles per second.

MIMD (Multiple Instruction Stream, Multiple Data Stream): According to Flynn's
taxonomy, a method of parallel processing in which multiple processors can executeI different instructions on different data simultaneously.

MIPS (Millions of Instructions per Second): An execution rate measured in units of
million instructions per second.

Monitor: A shared data structure and set of functions that access the data structure to
control the synchronization of concurrent processes.

I Multiprocessor: A parallel computer comprising many independent processors and
facilities for interconnecting them and controlling their interactions.

Mutual Exclusion: A sequence of statements that are treated atomically.

nsec (nanosecond): The unit of time which is equal to 10-9 second.

Object-Oriented Programming: A programming paradigm in which data and code are
encapsulated in entities called objects which interact by the exchange of messages.

Parallel Computing: Programs that use multiple processors concurrently to carry out
computations.

I Pipeline: A hardware structure with a sequence of stages through which a computation
proceeds and in which new operations can be initiated in assembly-line fashion.

Race condition: A set of circumstances in which the relative speeds of the processes
lead to results that may be difficult to predict. This condition may exist when two or
more threads of control participate in unsynchronized access to a common resource.

I RAM: Random access memory.

RISC (Reduced Instruction Set Computer): A computer whose instruction set
contains relatively few instructions-all of which are simple and require one or very
few cycles to execute.

Scalability: Ability of a computer system to increase in size (with little redesign of its

components) and still maintain efficiency.

Scalar Arithmetic: Arithmetic operations that manipulate individual pieces of data.

Semaphore: A protected synchronization variable whose value can be accessed and
altered only by primitive, indivisible operations. A semaphore acts like a lock on a
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critical section of code, allowing only one process at a time to execute the code. I
Semaphores can be implemented in software or hardware.

Serialization: The forcing of a collection of tasks to be performed one at a time instead
of in parallel.

Shared Memory: A memory architecture in which data can be accessed directly by all
the processors.

SIID (Single Instruction Stream, Multiple Data Stream): According to Flynn's
taxonomy, a method of parallel processing in which multiple processors execute the U
same instruction on separate data elements simultaneously.

Speedup: The ratio of the time to execute a sequential program to the time to execute a
parallel program for the same computation on a multiprocessor whose processing I
units are identical to the sequential processor.

Spinlock: A hardware or software shared variable that is continuously tested until aI
condition becomes true.

Supercomputer: A class of computer that represents the most powerful in existence. 3
Supercomputers are grossly measured by floating point operations per second and are
further differentiated from all other computers by price and application-processing
capabilities.

Synchronization: The coordination of activity between processes or processors.

Tasking: Dividing a computer program into separate threads of control which may be 3
performed concurrently.

Teraflops: One trillion floating point operations per second.

Vector : A data structure consisting of an ordered set of elements.

Vector Arithmetic: Arithmetic operations that manipulate vectors. U
VLSI: Very Large Scale Integration 3
Von Neumann Computer: Computer that stores programs and data in memory and

uses a program counter to control the execution of instructions.

B
I
I
I

B-4


